? BLOOD CELL DEVELOPMENT AND FUNCTION PROGRAM The Blood Cell Development and Function (BCDF) Program is led by Balachandran and Wiest, and is comprised of 21 Primary and 6 Collaborating Members. Program funding is $7M (project direct costs) of which $6.1M is peer-reviewed and $1.9M is from the NCI. In addition to funded laboratory investigators, the Program includes 7 clinicians/clinical researchers, whose expertise and translational scientific interests are vital to inter- and intra-programmatic collaborations, and to accelerate translation of research findings to new insights and treatments for patients. Program members are highly productive and interactive: 11% of 305 publications are intra-programmatic, 17% are inter-programmatic, and 31% were published in high-impact journals. The scientific mission of the BCDF Program is to define how perturbations in control of cell fate decisions can lead to the development of blood cancers, to delineate how inflammation within a solid tumor can influence tumor progression, and to capitalize on the unique interactions between cells of the immune system and their targets to improve cancer immunotherapy. All members of this basic science program participate in cancer- relevant research, and over the past funding cycle, many basic science observations have advanced to translationally-focused studies. Highlighted examples underscore this ?basic-to-translation? trajectory. The mission of the Program is pursued through three inter-related themes: 1) to define processes that control hematopoiesis and assess their relevance to the etiology of hematologic malignancies (Development theme); 2) to define how the inflammatory response prevents or controls infections, and to apply that knowledge to how cancers develop and how they can be targeted (Inflammation theme); and 3) to explore how the action of immune cells and their soluble products (e.g., interferons) is controlled, with the ultimate aim of exploiting these insights to identify patients that are unresponsive to immunotherapy and to apply these insights to reverse immune exhaustion and restore vigorous anti-tumor immune responses. Specifically, BDCF investigators seek to identify non-responders prior to treatment and determine how to expand the number of patients who could benefit from such approaches (a developing Immune Effectors theme). Common scientific interests among investigators in this Program, coupled with new and extant inter- and intra-programmatic collaborations, enable synergies that interconnect these themes. Investigators within this Program benefit extensively from CCSG- supported Shared Resources, and rely heavily on the establishment and use of animal models. Consequently, many are major users of the Laboratory Animal Facility, including its zebrafish module, and the Transgenic Mouse Facility. Additional, cutting-edge technologies also further these themes, including multi-parametric flow cytometry, laser capture microdissection, next-generation sequencing, adoptive cellular transfers, genome editing with Zinc finger nucleases or CRISPR/Cas9, and copy number analysis, accomplished through the Cell Culture, Biological Imaging, Genomics, and Histopathology Facilities.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006927-54
Application #
9754615
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
54
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Research Institute of Fox Chase Cancer Center
Department
Type
DUNS #
064367329
City
Philadelphia
State
PA
Country
United States
Zip Code
19111
Fareed, Muhammad M; Eldib, Ahmed; Weiss, Stephanie E et al. (2018) A treatment planning comparison between a novel rotating gamma system and robotic linear accelerator based intracranial stereotactic radiosurgery/radiotherapy. Phys Med Biol 63:035029
Bleicher, Richard J (2018) Timing and Delays in Breast Cancer Evaluation and Treatment. Ann Surg Oncol 25:2829-2838
Bai, Tian; Chanda, Ashis Kumar; Egleston, Brian L et al. (2018) EHR phenotyping via jointly embedding medical concepts and words into a unified vector space. BMC Med Inform Decis Mak 18:123
Mehrazin, Reza; Dulaimi, Essel; Uzzo, Robert G et al. (2018) The correlation between gain of chromosome 8q and survival in patients with clear and papillary renal cell carcinoma. Ther Adv Urol 10:3-10
Tang, Baiqing; Lee, Hyung-Ok; An, Serim S et al. (2018) Specific Targeting of MTAP-Deleted Tumors with a Combination of 2'-Fluoroadenine and 5'-Methylthioadenosine. Cancer Res 78:4386-4395
Fang, Carolyn Y; Tseng, Marilyn (2018) Ethnic density and cancer: A review of the evidence. Cancer 124:1877-1903
Malik, R; Luong, T; Cao, X et al. (2018) Rigidity controls human desmoplastic matrix anisotropy to enable pancreatic cancer cell spread via extracellular signal-regulated kinase 2. Matrix Biol :
Giri, Veda N; Obeid, Elias; Hegarty, Sarah E et al. (2018) Understanding of multigene test results among males undergoing germline testing for inherited prostate cancer: Implications for genetic counseling. Prostate 78:879-888
Anari, Fern; O'Neill, John; Choi, Woonyoung et al. (2018) Neoadjuvant Dose-dense Gemcitabine and Cisplatin in Muscle-invasive Bladder Cancer: Results of a Phase 2 Trial. Eur Urol Oncol 1:54-60
Drilon, Alexander; Laetsch, Theodore W; Kummar, Shivaani et al. (2018) Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N Engl J Med 378:731-739

Showing the most recent 10 out of 1280 publications