OF SHARED RESOURCE Since the founding of the Pharmacology Analytical Core in 1985, the primary mission of the Core has been to enable the inclusion of critical pharmacological endpoints in the design of clinical trials and preclinical studies, and stimulate new hypotheses and areas of investigation by providing low-cost, state-of-the-art services. The purpose of the Core is to: 1) provide users with expertise in pharmacological trial design, analytical method development, quantitative assays, pharmacokinetic data analysis, and data interpretation in a centralized, dedicated and experienced facility; 2) provide services in real time; 3) minimize cost and effort for Cancer Center investigators; 4) prevent duplication of equipment, technical effort and analytical and pharmacokinetic analysis expertise for the Cancer Center by providing flexible assignment of personnel and equipment. The Core resource provides state-of-the-art equipment, facilities, and expertise in pharmacological trial design, analytical quantitation, and data analysis in approximately 1000 square footage of space on the first floor of the Bunting-Blaustein Cancer Research Building. The location of the Core is adequate both in size and location to meet the needs of the Cancer Center investigators to investigate drug metabolism and disposition and the pharmacodynamics and pharmacogenetics of anticancer agents.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006973-46
Application #
7726512
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
46
Fiscal Year
2008
Total Cost
$114,285
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Woodard, Lauren E; Dennis, Cindi L; Borchers, Julie A et al. (2018) Nanoparticle architecture preserves magnetic properties during coating to enable robust multi-modal functionality. Sci Rep 8:12706
Shrestha, Eva; White, James R; Yu, Shu-Han et al. (2018) Profiling the Urinary Microbiome in Men with Positive versus Negative Biopsies for Prostate Cancer. J Urol 199:161-171
Gordy, James T; Luo, Kun; Francica, Brian et al. (2018) Anti-IL-10-mediated Enhancement of Antitumor Efficacy of a Dendritic Cell-targeting MIP3?-gp100 Vaccine in the B16F10 Mouse Melanoma Model Is Dependent on Type I Interferons. J Immunother 41:181-189
El-Diwany, Ramy; Soliman, Mary; Sugawara, Sho et al. (2018) CMPK2 and BCL-G are associated with type 1 interferon-induced HIV restriction in humans. Sci Adv 4:eaat0843
Kyker-Snowman, Kelly; Erlanger Avigdor, Bracha; Nasim, Mansoor et al. (2018) A primary breast cancer with distinct foci of estrogen receptor-alpha positive and negative cells derived from the same clonal origin as revealed by whole exome sequencing. Breast Cancer Res Treat 170:425-430
Christenson, Eric S; Antonarakis, Emmanuel S (2018) PARP inhibitors for homologous recombination-deficient prostate cancer. Expert Opin Emerg Drugs 23:123-133
Ambinder, Richard F (2018) A viral protein kinase drug target for tumors? J Clin Invest 128:2197-2198
Lee, Alice J; Montgomery, Madeline C; Patel, Rupa R et al. (2018) Improving Insurance and Health Care Systems to Ensure Better Access to Sexually Transmitted Disease Testing and Prevention. Sex Transm Dis 45:283-286
Bharathy, Narendra; Berlow, Noah E; Wang, Eric et al. (2018) The HDAC3-SMARCA4-miR-27a axis promotes expression of the PAX3:FOXO1 fusion oncogene in rhabdomyosarcoma. Sci Signal 11:
McGrath-Morrow, Sharon A; Ndeh, Roland; Helmin, Kathryn A et al. (2018) DNA methylation regulates the neonatal CD4+ T-cell response to pneumonia in mice. J Biol Chem 293:11772-11783

Showing the most recent 10 out of 2393 publications