The Tissue Microarray (TMA) Core facility shared resource provides a number of technologies, services and scientific consultation to support the research of the Sidney Kimmel Comprehensive Cancer Center (SKCCC) members and other Johns Hopkins University and outside investigators. In addition to TMA-related services, the laboratory has recently added routine histology services as well as consultations in and performance of immunohistochemistry (IHC) and multi-label immunofluorescence (IF) staining. The addition of these services and key personnel with vital expertise in these areas has greatly expanded the capabilities of this facility and markedly enhances the ability of SKCCC and other researchers to perform critically needed tissue leased biomarker studies. The TMA Lab has constructed 654 TMAs for 49 investigators containing 93,706 tissue Cores from 10,362 patient specimens containing tumors from the prostate, breast, pancreas, gall bladder, cervix, ovary, brain, liver, urinary bladder, salivary glands, esophagus, head and neck, thyroid and various cell lines and xenografts. Users have published more than 80 manuscripts involving this resource since the last funding period began. Instrumentation and expertise is available to automatically capture high resolution digital images of both standard histology/IHC based slides and TMA slides and the Core has greatly improved its capabilities in quantitative image analysis. Users have access to a set of Open Source web based software tools and backend database (TMAJ) that were developed to facilitate all facets of research involving TMA technology from TMA design, data entry, image diagnosis, image analysis, and publishing on the Internet.
The Specific Aims of this Shared Resource are to support and speed translational cancer research by : 1) continuing to guide production of and produce TMAs for SKCCC members and others using human surgical and autopsy specimens, human specimens from clinical trials, xenografts, animal tissue specimens and cell lines as needed;2) providing scientific consultations and services for routine histology and IHC/IF for novel cancer-associated biomarkers;3) t continuing to evaluate and update new TMA construction and slide scanning and image analyzis platforms;4) enhancing the Core's information technology platform to improve ease of use sharing of information. Lay: Our shared resource provides technology and expertise to facilitate all aspects of tissue based biomarker translational research on human biospecimens. This allows SKCCC investigators to more rapidly develop biomarkers and to help translate these biomarkers into tools that will help doctors better care for cancer patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA006973-50
Application #
8559765
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
50
Fiscal Year
2013
Total Cost
$113,892
Indirect Cost
$43,588
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Taube, Janis M; Galon, Jérôme; Sholl, Lynette M et al. (2018) Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 31:214-234
Giraldo, Nicolas A; Nguyen, Peter; Engle, Elizabeth L et al. (2018) Multidimensional, quantitative assessment of PD-1/PD-L1 expression in patients with Merkel cell carcinoma and association with response to pembrolizumab. J Immunother Cancer 6:99
Barberi, Theresa; Martin, Allison; Suresh, Rahul et al. (2018) Absence of host NF-?B p50 induces murine glioblastoma tumor regression, increases survival, and decreases T-cell induction of tumor-associated macrophage M2 polarization. Cancer Immunol Immunother 67:1491-1503
Dean, Lorraine T; Gehlert, Sarah; Neuhouser, Marian L et al. (2018) Social factors matter in cancer risk and survivorship. Cancer Causes Control 29:611-618
Krueger, Timothy E G; Thorek, Daniel L J; Denmeade, Samuel R et al. (2018) Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise. Stem Cells Transl Med 7:651-663
Boudadi, Karim; Suzman, Daniel L; Anagnostou, Valsamo et al. (2018) Ipilimumab plus nivolumab and DNA-repair defects in AR-V7-expressing metastatic prostate cancer. Oncotarget 9:28561-28571
Annesley, Colleen E; Rabik, Cara; Duffield, Amy S et al. (2018) Knock-in of the Wt1 R394W mutation causes MDS and cooperates with Flt3/ITD to drive aggressive myeloid neoplasms in mice. Oncotarget 9:35313-35326
Yuan, Ming; Da Silva, Ana Cristina A L; Arnold, Antje et al. (2018) MicroRNA (miR) 125b regulates cell growth and invasion in pediatric low grade glioma. Sci Rep 8:12506
Jacobs, Michael A; Macura, Katarzyna J; Zaheer, Atif et al. (2018) Multiparametric Whole-body MRI with Diffusion-weighted Imaging and ADC Mapping for the Identification of Visceral and Osseous Metastases From Solid Tumors. Acad Radiol 25:1405-1414
Ramos, Juan C; Sparano, Joseph A; Rudek, Michelle A et al. (2018) Safety and Preliminary Efficacy of Vorinostat With R-EPOCH in High-risk HIV-associated Non-Hodgkin's Lymphoma (AMC-075). Clin Lymphoma Myeloma Leuk 18:180-190.e2

Showing the most recent 10 out of 2393 publications