The mission of the Cancer Immunology (CI) Program is to understand the basic biology of the immune response to cancer and to use those data to optimize immunotherapy for cancer?first in preclinical models, and subsequently through the design and execution of cutting-edge translational clinical trials. The Program, formerly led by Drew Pardoll, M.D., Ph.D., and Elizabeth Jaffee, M.D., is now led by Dr. Pardoll and Charles Drake, M.D., Ph.D., as Dr. Jaffee assumed the role of Deputy Director of the Sidney Kimmel Comprehensive Cancer Center (SKCCC). The Program includes 21 members from seven departments within the Johns Hopkins University School of Medicine. National Cancer Institute (NCI) and other peer-reviewed support of Program members totals $8.9 million total costs annually, and the Program receives an additional $26.1 million annually in nonpeer-reviewed funding. Sixteen members have peer-reviewed funding. The total number of publications by Program members is 434, of which 108 (25%) were Intra-Programmatic, 188 (43%) were Inter- Programmatic and 142 (33%) were multi-institutional collaborations. Building on basic, translational and clinical trials successes over the past five years, the Program seeks to harvest the untapped capacity of the immune system's power to provide further durable cancer remission and even cure. The Programs aims are to:
Aim 1 : Continue to unravel basic mechanisms of immune regulation and cancer immunity that will fuel the next generation of cancer immunotherapies.
Aim 2 : Utilize appropriate preclinical models to understand and optimize antitumor immunity, including identification of the most potent combinatorial approaches, such as vaccines together with checkpoint inhibitors.
Aim 3 : Initiate and complete cutting-edge clinical trials, including the incorporation of appropriate translational biomarker studies designed to guide, with precision, current and next-generation immunotherapies. In particular, the Program will build on studies over the past five years identifying ligands in the tumor microenvironment (TME) and on tumor genetics and viral association as predictors of response to checkpoint blockade.
These aims are facilitated by partnerships among laboratory-focused investigators, translational investigators in the CI Program and multiple other SKCCC Programs to jointly develop specific preclinical immunotherapy strategies and then translate them into the most suitable clinical settings. Notable advances over the past five years include 1) the preclinical testing and foundational clinical development of the first anti-PD-1 antibodies in cancer therapy, 2) development of the PD-L1 biomarker, 3) demonstration that mismatch repair deficiency (MMRd) cancers and virus-associated cancers have a very high response to anti-PD-1, 3) demonstration of patient benefit with novel prime-boost vaccine strategies in pancreas cancer, 4) development of marrow- infiltrating lymphocytes for adoptive cell therapy, 5) discovery of four novel immune checkpoint pathways, 6) development of a novel vaccine platform (STINGVAX), and 7) discovery of metabolic pathways that modulate T cell function and enhance antitumor efficacy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA006973-54
Application #
9278352
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2017-05-01
Budget End
2018-04-30
Support Year
54
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Gorin, Michael A; Rowe, Steven P; Patel, Hiten D et al. (2018) Prostate Specific Membrane Antigen Targeted 18F-DCFPyL Positron Emission Tomography/Computerized Tomography for the Preoperative Staging of High Risk Prostate Cancer: Results of a Prospective, Phase II, Single Center Study. J Urol 199:126-132
Bharti, Santosh K; Mironchik, Yelena; Wildes, Flonne et al. (2018) Metabolic consequences of HIF silencing in a triple negative human breast cancer xenograft. Oncotarget 9:15326-15339
Jackson, Sadhana; Weingart, Jon; Nduom, Edjah K et al. (2018) The effect of an adenosine A2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma. Fluids Barriers CNS 15:2
Dejea, Christine M; Fathi, Payam; Craig, John M et al. (2018) Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359:592-597
Baena-Del Valle, Javier A; Zheng, Qizhi; Esopi, David M et al. (2018) MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer. J Pathol 244:11-24
Jiang, Wei; Zhou, Xiaoyan; Li, Zengxia et al. (2018) Prolyl 4-hydroxylase 2 promotes B-cell lymphoma progression via hydroxylation of Carabin. Blood 131:1325-1336
Nagai, Kozo; Hou, Lihong; Li, Li et al. (2018) Combination of ATO with FLT3 TKIs eliminates FLT3/ITD+ leukemia cells through reduced expression of FLT3. Oncotarget 9:32885-32899
Sturgeon, Kathleen M; Hackley, Renata; Fornash, Anna et al. (2018) Strategic recruitment of an ethnically diverse cohort of overweight survivors of breast cancer with lymphedema. Cancer 124:95-104
Martino, Thiago; Kudrolli, Tarana A; Kumar, Binod et al. (2018) The orally active pterocarpanquinone LQB-118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress. Prostate 78:140-151
Antonarakis, Emmanuel S; Lu, Changxue; Luber, Brandon et al. (2018) Germline DNA-repair Gene Mutations and Outcomes in Men with Metastatic Castration-resistant Prostate Cancer Receiving First-line Abiraterone and Enzalutamide. Eur Urol 74:218-225

Showing the most recent 10 out of 2393 publications