The primary goal of the X-ray Crystallography Core is to enable and facilitate the research of MSKCC laboratories that use X-ray crystallography as a tool to address questions in their research programs. The facility maintains in-house equipment for data collection, processing and structure determination, implements a wide range of crystallographic and structure analysis software packages, provides long-term regular access to state-of-the-art synchrotron beamlines through participation in multi-institutional consortia at two national laboratory locations, provides training and technical assistance to users of both the in-house and remote facilities, and provides expertise in structural biology and modeling and guidance to non-structural MSKCC laboratories that benefit from the use of available structures in the design and interpretation of experiments. Structural biology has been playing an increasing role in understanding the many biological processes important in cancer and in accelerating the pace of anti-cancer drug discovery. In the post-genomic era, the need for structural data to understand biological function and regulation, to provide scaffolds for the design or improvement of candidate anticancer compounds, and to help identify molecular function will increase with the application of massively parallel data acquisition tools such as DMA arrays, global protein-protein interaction maps and large scale identification of cancer-related genes. This will require increased throughput from conventional X-ray crystallography facilities, and new, state-of-the-art synchrotron facilities to accelerate structure determination and to allow the study of increasingly large and complex structures and macromolecular assemblies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA008748-47S4
Application #
8602878
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-01-20
Project End
2014-12-31
Budget Start
2012-01-09
Budget End
2012-12-31
Support Year
47
Fiscal Year
2013
Total Cost
$272,345
Indirect Cost
$128,703
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Kavaler, Joshua; Duan, Hong; Aradhya, Rajaguru et al. (2018) miRNA suppression of a Notch repressor directs non-neuronal fate in Drosophila mechanosensory organs. J Cell Biol 217:571-583
Bosse, Tjalling; Nout, Remi A; McAlpine, Jessica N et al. (2018) Molecular Classification of Grade 3 Endometrioid Endometrial Cancers Identifies Distinct Prognostic Subgroups. Am J Surg Pathol 42:561-568
Hellmann, Matthew D; Nathanson, Tavi; Rizvi, Hira et al. (2018) Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer. Cancer Cell 33:843-852.e4
Scordo, Michael; Morjaria, Sejal M; Littmann, Eric R et al. (2018) Distinctive Infectious Complications in Patients with Central Nervous System Lymphoma Undergoing Thiotepa, Busulfan, and Cyclophosphamide-conditioned Autologous Stem Cell Transplantation. Biol Blood Marrow Transplant 24:1914-1919
Byron, Sara A; Tran, Nhan L; Halperin, Rebecca F et al. (2018) Prospective Feasibility Trial for Genomics-Informed Treatment in Recurrent and Progressive Glioblastoma. Clin Cancer Res 24:295-305
Zarnegar, Sara; Durham, Benjamin H; Khattar, Pallavi et al. (2018) Novel activating BRAF fusion identifies a recurrent alternative mechanism for ERK activation in pediatric Langerhans cell histiocytosis. Pediatr Blood Cancer 65:
Francis, Jasmine H; Slakter, Jason S; Abramson, David H et al. (2018) Treatment of juxtapapillary hemangioblastoma by intra-arterial (ophthalmic artery) chemotherapy with bevacizumab. Am J Ophthalmol Case Rep 11:49-51
Lee, Stanley Chun-Wei; North, Khrystyna; Kim, Eunhee et al. (2018) Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations. Cancer Cell 34:225-241.e8
Motzer, Robert J; Escudier, Bernard; Powles, Thomas et al. (2018) Long-term follow-up of overall survival for cabozantinib versus everolimus in advanced renal cell carcinoma. Br J Cancer 118:1176-1178
Giancipoli, Romina Grazia; Monti, Serena; Basturk, Olca et al. (2018) Complete metabolic response to therapy of hepatic epithelioid hemangioendothelioma evaluated with 18F-fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography: A CARE case report. Medicine (Baltimore) 97:e12795

Showing the most recent 10 out of 8799 publications