The mission of the Molecular Cytology Core is to deliver cutting-edge, specialized services in support of research projects at the Center. The methodologies employed by the Core allow for the detection in situ (in cells, tissue sections, organoids and whole mounts) of biomarkers (proteins, glycoproteins, lipids, nucleic acids) and molecular processess in normal and pathological conditions. The precise localization of the biomarkers is achieved by optical imaging of fixed and live samples. Several molecular markers (up to seven) can be vizualized simultanously or sequentially in the same sample by multiplex staining, using machine-based protocols. In collaboration with its users, the Core performs comprehensive antibody validations. The Core trains investigators in basic staining principles and assists them in performing manual experiments. The optical imaging modalities within the Core allow for wide field imaging and confocal imaging of tissue sections, thick and cleared tissue samples, cells, live embryos, tumors in live mice, etc. Super-resolution imaging is performed as well as confocal imaging in the IR range to visualize nanomaterials and drugs. With the newly acquired module for fluorescence correlation spectroscopy (FCS) imaging, researchers can study the dynamic behavior of biomolecules. The Core scans user slides with four digital slide scanners, one of which has confocal capabilities. The scanning generates large volumes of data and serves as a valuable resource for image analysis. Microscopy staff provides strong support for the users with 2D and 3D image analysis. The Core?s Atomic Force microscope is heavily used to study molecular interactions with nanometer resolution, to evaluate the effect of inhibitors on pathologic processes, and to assess stiffness of tissues from normal and cancer- bearing animals as well as tissues from cancer patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA008748-55
Application #
10084814
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-01-20
Project End
2023-12-31
Budget Start
2021-01-01
Budget End
2021-12-31
Support Year
55
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Schlappe, Brooke A; Weaver, Amy L; Ducie, Jennifer A et al. (2018) Multicenter study comparing oncologic outcomes between two nodal assessment methods in patients with deeply invasive endometrioid endometrial carcinoma: A sentinel lymph node algorithm versus a comprehensive pelvic and paraaortic lymphadenectomy. Gynecol Oncol 151:235-242
Pareja, Fresia; Da Cruz Paula, Arnaud; Murray, Melissa P et al. (2018) Recurrent MED12 exon 2 mutations in benign breast fibroepithelial lesions in adolescents and young adults. J Clin Pathol :
Yao, Zhan; Gao, Yijun; Su, Wenjing et al. (2018) RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling. Nat Med :
Dumane, Vishruta A; Saksornchai, Kitwadee; Zhou, Ying et al. (2018) Reduction in low-dose to normal tissue with the addition of deep inspiration breath hold (DIBH) to volumetric modulated arc therapy (VMAT) in breast cancer patients with implant reconstruction receiving regional nodal irradiation. Radiat Oncol 13:187
Turashvili, Gulisa; Fix, Daniel J; Soslow, Robert A et al. (2018) Wilms Tumor of the Ovary: Review of the Literature and Report of 2 Cases. Int J Gynecol Pathol :
Krantz, Benjamin A; O'Reilly, Eileen M (2018) Biomarker-Based Therapy in Pancreatic Ductal Adenocarcinoma: An Emerging Reality? Clin Cancer Res 24:2241-2250
Chowell, Diego; Morris, Luc G T; Grigg, Claud M et al. (2018) Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359:582-587
Morgani, Sophie M; Metzger, Jakob J; Nichols, Jennifer et al. (2018) Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning. Elife 7:
Senders, Max L; Que, Xuchu; Cho, Young Seok et al. (2018) PET/MR Imaging of Malondialdehyde-Acetaldehyde Epitopes With a Human Antibody Detects Clinically Relevant Atherothrombosis. J Am Coll Cardiol 71:321-335
Fang, Jing; Muto, Tomoya; Kleppe, Maria et al. (2018) TRAF6 Mediates Basal Activation of NF-?B Necessary for Hematopoietic Stem Cell Homeostasis. Cell Rep 22:1250-1262

Showing the most recent 10 out of 8799 publications