The purpose of the Genomics Facility is to provide routine and state of the art genomic technologies to support cutting edge genomics research of the Cancer Center. Routine DNA sequencing provides DNA sequence of new DNA clones and recombinant vectors. Additional services focus on new or complex genomic technologies that can not be readily developed in a single laboratory, especially given the rapid technological advancements in this technical area. The Genomics Facility has changed considerably over the past several years to keep pace with the changing needs of Center members and the rapid growth in new genomic technologies. The Cancer Center has recently purchased an Illumina (Solexa) Genome Analyzer, and, through an NCI small equipment grant, an Illumina BeadStation. This grant was facilitated by a Cancer Center pilot grant that facilitated the development of a high throughput PCR platform. The Facility is widely used by all three research programs and almost every Cancer Center investigator. Although many larger institutions separate the sequencing and genomics functions, the Facility has developed a working model to combine the services effectively, primarily through cross-training of facility personnel. This approach provides stability and efficiency. The Facility treats DNA sequencing and the various genomics activities as separate services. The Illumina Genome Analyzer applications have been added to services provided by the Genomics Facility. During the next funding period, the Facility will introduce multiple approaches to monitoring epigenetic changes with the Illumina Genome Analyzer and Illumina promoter methylation arrays. In response to a significant interest of Center members in microRNA (miRNA) functions in development and disease, a high throughput Illumina miRNA platform will be established to complement the ABI low density miRNA arrays presently being used by the facility. Future plans also include the development of protocols that will allow investigators to look at gene expression in small numbers of cells, such as various types of stem cells.

Public Health Relevance

The ability to determine the DNA sequence of cloned DNA and to now perform deep DNA sequence determination are fundamental tools of modern cancer biology. Analysis of gene expression patterns for number of genes in a single experiment promises to help elucidate the changes in networks that will help to target cancer therapeutics to the most critical point in these networks and to characterize cancers.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA010815-42
Application #
8233470
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
42
Fiscal Year
2011
Total Cost
$225,853
Indirect Cost
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Perego, M; Maurer, M; Wang, J X et al. (2018) A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene 37:302-312
Echevarría-Vargas, Ileabett M; Reyes-Uribe, Patricia I; Guterres, Adam N et al. (2018) Co-targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitor-resistant melanoma. EMBO Mol Med 10:
Li, Heng; Wang, Zhize; Xiao, Wei et al. (2018) Androgen-receptor splice variant-7-positive prostate cancer: a novel molecular subtype with markedly worse androgen-deprivation therapy outcomes in newly diagnosed patients. Mod Pathol 31:198-208
Shastrula, Prashanth K; Rice, Cory T; Wang, Zhuo et al. (2018) Structural and functional analysis of an OB-fold in human Ctc1 implicated in telomere maintenance and bone marrow syndromes. Nucleic Acids Res 46:972-984
Duperret, Elizabeth K; Trautz, Aspen; Ammons, Dylan et al. (2018) Alteration of the Tumor Stroma Using a Consensus DNA Vaccine Targeting Fibroblast Activation Protein (FAP) Synergizes with Antitumor Vaccine Therapy in Mice. Clin Cancer Res 24:1190-1201
Heppt, Markus V; Wang, Joshua X; Hristova, Denitsa M et al. (2018) MSX1-Induced Neural Crest-Like Reprogramming Promotes Melanoma Progression. J Invest Dermatol 138:141-149
Wu, Shuai; Fatkhutdinov, Nail; Fukumoto, Takeshi et al. (2018) SWI/SNF catalytic subunits' switch drives resistance to EZH2 inhibitors in ARID1A-mutated cells. Nat Commun 9:4116
Ecker, Brett L; Kaur, Amanpreet; Douglass, Stephen M et al. (2018) Age-Related Changes in HAPLN1 Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. Cancer Discov :
Abdel-Mohsen, Mohamed; Kuri-Cervantes, Leticia; Grau-Exposito, Judith et al. (2018) CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells. Sci Transl Med 10:
Fukumoto, Takeshi; Magno, Elizabeth; Zhang, Rugang (2018) SWI/SNF Complexes in Ovarian Cancer: Mechanistic Insights and Therapeutic Implications. Mol Cancer Res 16:1819-1825

Showing the most recent 10 out of 741 publications