? GENE EXPRESSION AND REGULATION The Gene Expression and Regulation Program (GER) is comprised of eight laboratories that work together in the areas of gene transcription and chromatin biology. The overarching goals of the Program match the long- term vision of the Cancer Center to merge basic understanding of fundamental biological mechanisms with translational identification of new, actionable therapeutic targets in cancer. To fulfill this goal, the GER Program brings together complementary and synergistic scientific excellence in three flagship themes: (i) Transcription and Chromatin Organization, (ii) Non-coding RNAs and Epigenetics, and (iii) Chromosomes and Genome Dynamics. In addition, the GER Program is at the forefront of an interdisciplinary theme in Chemical Biology of Novel Cancer Drug Targets, in line with the focus of the Cancer Center in early-stage academic drug discovery. Progress during the last five years has been transformative. GER Program members continued to lead their respective fields of investigation with high-impact publications in the top-tier literature, strengthened their cancer focus and attracted new talents to build ?critical mass? in flagship research themes. The most far-reaching goals set forth in the last Cancer Center Support Grant (CCSG) renewal were also met. GER Program members have now significantly expanded their intra- and inter-programmatic collaborations, increased the utilization of Shared Resources, achieved important basic and translational milestones in the ovarian cancer research continuum signature, and advanced innovative cancer therapeutics to the stage of first-in-human testing. During the last CCSG budget cycle, GER Program members published 104 cancer- related, discovery articles. Of these, 12.5% and 36.5% were the product of intra- or inter-programmatic collaborations, respectively, compared to 7% and 19% of the previous CCSG budget cycle, bringing the total collaborative publications of the Program from 23% in 2013 to more than 43% in 2018. Currently, GER Program members receive $3.4 million in peer-reviewed, cancer-related funding (total funding, $4.9 million), with $2.2 million from the NCI for a strong cancer focus of 64%. In addition, $2.2 million out of $3.4 million (65%) of peer-reviewed funding is the product of internal or external collaborations. Accordingly, the Program is home to two collaborative Program Project grants (P01 CA174439; P01 AG031862) and one multi- institutional Specialized Program of Research Excellence in ovarian cancer (SPORE, P50 CA228991; anticipated funding, 2018). In addition, the Program functions as a regional pole of collaborative research in early-stage drug discovery, leading a Philadelphia Drug Discovery Forum that brings together expertise from academic Institutions and the pharmaceutical and biotechnology industry. The GER Program is ideally poised to continue on this exponential trajectory of research preeminence during the next CCSG budget cycle, integrating basic understanding of biological pathways with impactful collaborations in translational cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA010815-52
Application #
10145620
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-04-01
Project End
2024-02-29
Budget Start
2021-03-01
Budget End
2022-02-28
Support Year
52
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Jenkins, Russell W; Aref, Amir R; Lizotte, Patrick H et al. (2018) Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov 8:196-215
Barnoud, Thibaut; Budina-Kolomets, Anna; Basu, Subhasree et al. (2018) Tailoring Chemotherapy for the African-Centric S47 Variant of TP53. Cancer Res 78:5694-5705
Barbieri, Elisa; Trizzino, Marco; Welsh, Sarah Ann et al. (2018) Targeted Enhancer Activation by a Subunit of the Integrator Complex. Mol Cell 71:103-116.e7
Seo, Jae Ho; Agarwal, Ekta; Bryant, Kelly G et al. (2018) Syntaphilin Ubiquitination Regulates Mitochondrial Dynamics and Tumor Cell Movements. Cancer Res 78:4215-4228
Lu, Huimin; Bowler, Nicholas; Harshyne, Larry A et al. (2018) Exosomal ?v?6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biol 70:20-35
Stout, Matthew C; Narayan, Shilpa; Pillet, Emily S et al. (2018) Inhibition of CX3CR1 reduces cell motility and viability in pancreatic adenocarcinoma epithelial cells. Biochem Biophys Res Commun 495:2264-2269
Hu, Xiaowen; Sood, Anil K; Dang, Chi V et al. (2018) The role of long noncoding RNAs in cancer: the dark matter matters. Curr Opin Genet Dev 48:8-15
Liu, Shujing; Zhang, Gao; Guo, Jianping et al. (2018) Loss of Phd2 cooperates with BRAFV600E to drive melanomagenesis. Nat Commun 9:5426
Saglam, Ozlen; Conejo-Garcia, Jose (2018) PD-1/PD-L1 immune checkpoint inhibitors in advanced cervical cancer. Integr Cancer Sci Ther 5:
Papasavvas, Emmanouil; Lada, Steven M; Joseph, Jocelin et al. (2018) Analytical ART interruption does not irreversibly change pre-interruption levels of cellular HIV. AIDS :

Showing the most recent 10 out of 741 publications