Mission/Purpose: The mission of the Tumor Tissue Core Laboratory is to facilitate translational cancer research by collecting and supplying high quality, well annotated human tissues (neoplastic and normal) to CCCWFU investigators. The Tumor Tissue Core carries out this mission by maintaining a repository of patient-derived tumors and matched normal tissues that are accompanied by pertinent clinical information, and by providing a Web-based database of available tumor and normal tissues for investigators to examine. Additionally, the Tumor Tissue Core assists investigators with custom collection of fresh human tissue samples for prospective translational research projects. The Tumor Tissue Core collaborates with the Cancer Biomedical Informatics Grid (caBIG?) initiative to link the core with other such repositories, nationally. Assets: The Tumor Tissue Core maintains a Web-based database for interaction of investigators with Core personnel and access to banked tissue inventories, as well as a functional instance linked to the caBIG? grid. The Tumor Tissue Core Laboratory is based in a fully functional research laboratory located on the 4th floor of the Hanes Building for processing tumor tissue samples. Presently, the Core maintains four -80?C freezers. Additionally, the Core has access to a Hacker motor-driven cryostat (maintained by the Cellular Imaging Core), an Agilent BioAnalyzer for RNA quality analysis (maintained by the MicroArray Core) and an Arcturus Pixcell ll/Olympus laser capture microscope for tissue microdissection (maintained by the Cellular Imaging Core). Usage: In the last year the Tumor Tissue Core collected 5354 tissue vials for research purposes. 1019 tissue vials were disbursed for 22 research projects. 88% of the disbursed tissue vials were utilized by CCCWFU members. The Tumor Tissue Core presently has over 22,000 tissue vials from >7000 patients, provided by 44 institutional surgeons. We have a comprehensive quality control protocol for monitoring sample quality. Future Directions: In the next funding cycle, the capabilities and utilization of the Tumor Tissue Core will be expanded by: (1) adding the caTIES and caARRAY modules that provide improved tissue annotation to the caTISSUE suite that is already grid enabled at our Cancer Center;(2) offering pilot fund RFA's to bolster the utilization of banked tissues;(3) increasing specimen utilization by the cancer genomics program that is part of the CCCWFU strategic plan;and (4) Adding a bar code scanner mechanism for more timely entry of collected sample information.

Public Health Relevance

This Shared Resource provides an adequate supply of high quality human tissue with appropriate annotation that is easily accessible by Cancer Center investigators. Successful grant applications and individual projects require a concerted effort by surgeons, pathologists, clinicians, basic scientists, and technicians to collect and maintain a biorepository that adheres to the best practices of human tissue collection. The Shared Resource at Wake Forest University School of Medicine has made it a priority to provide this service to its members.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA012197-37
Application #
8555575
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-02-01
Project End
2017-01-31
Budget Start
2012-04-01
Budget End
2013-01-31
Support Year
37
Fiscal Year
2012
Total Cost
$87,767
Indirect Cost
$28,430
Name
Wake Forest University Health Sciences
Department
Type
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Farris, Michael; McTyre, Emory R; Okoukoni, Catherine et al. (2018) Cortical Thinning and Structural Bone Changes in Non-Human Primates after Single-Fraction Whole-Chest Irradiation. Radiat Res 190:63-71
Bolduc, Jesalyn A; Nelson, Kimberly J; Haynes, Alexina C et al. (2018) Novel hyperoxidation resistance motifs in 2-Cys peroxiredoxins. J Biol Chem 293:11901-11912
Garland, Mary; Addis, Dylan; Russell, Greg et al. (2018) The Effect of Regional Anesthesia on Oncologic Outcomes after Resection of Colorectal Hepatic Metastases. Am Surg 84:e29-32
Petty, W Jeffrey; Urbanic, James J; Ahmed, Tamjeed et al. (2018) Long-Term Outcomes of a Phase 2 Trial of Chemotherapy With Consolidative Radiation Therapy for Oligometastatic Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 102:527-535
Paek, M-S; Nightingale, C L; Tooze, J A et al. (2018) Contextual and stress process factors associated with head and neck cancer caregivers' physical and psychological well-being. Eur J Cancer Care (Engl) 27:e12833
Dutta, Samrat; Rivetti, Claudio; Gassman, Natalie R et al. (2018) Analysis of single, cisplatin-induced DNA bends by atomic force microscopy and simulations. J Mol Recognit 31:e2731
Pardee, Timothy S; Anderson, Rebecca G; Pladna, Kristin M et al. (2018) A Phase I Study of CPI-613 in Combination with High-Dose Cytarabine and Mitoxantrone for Relapsed or Refractory Acute Myeloid Leukemia. Clin Cancer Res 24:2060-2073
Atkins, Hannah M; Appt, Susan E; Taylor, Robert N et al. (2018) Systemic Iron Deficiency in a Nonhuman Primate Model of Endometriosis. Comp Med 68:298-307
Godwin, Ryan C; Gmeiner, William H; Salsbury Jr, Freddie R (2018) All-atom molecular dynamics comparison of disease-associated zinc fingers. J Biomol Struct Dyn 36:2581-2594
Yang, M; Forbes, M E; Bitting, R L et al. (2018) Incorporating blood-based liquid biopsy information into cancer staging: time for a TNMB system? Ann Oncol 29:311-323

Showing the most recent 10 out of 548 publications