Mission: The Bioanalytical Laboratory (BL) is a heavily used shared resource of the Comprehensive Cancer Center with a mission to provide access to advanced analytical services, technologies and scientific consultation for DNA, protein, and lipid chemistry. The BL specializes in discovery, identification, characterization, and quantification of biomolecules including: structural analysis of proteins, peptides and lipids by mass spectrometry and biochemical methods;DNA sequence analysis;DNA/RNA synthesis; chromatography of proteins, peptides, DNA, and lipids;and quantification of clinical biomarkers in tissue and blood specimens. Assets: Assets of the BL include more than 10 major instrument systems and the expertise of its staff members. Co-directors, Drs. Mark Lively and Michael Thomas, are expert chemists with more than 50 years of combined experience in research and core laboratory management. Dr. Thomas is a lipid mass spectrometry expert. Dr. Lively is a founding member and former president of the Association of Biomolecular Resource Facilities (ABRF). He is a member of the National Advisory Research Resources Council of the NIH National Center for Research Resources. The BL technicians have more than 80 years of combined laboratory experience. Usage: The BL supported the research of 73 Center members from 11/2009 -10/2010, analyzing 10,234 samples. The most heavily used services were: mass spectrometry methods (4,018 spls);DNA sequencing (4,299 spIs);biomarker HPLC (746 spIs);protein/peptide methods (248 spIs);and DNA synthesis (182 spIs). Center members received 60% of the services performed. Future directions: The BL recently added two important new mass spectrometers, a ThermoFisher TSQ Discovery Max electrospray, triple quadrupole mass spectrometer, to enhance the study of polar lipids and a ThermoFisher TSQ Quantum XLS triple quadrupole gas-chromatograph (GC) mass spectrometer. An Advion Nanomate? source was acquired for the Q-TOF mass spectrometer for proteomics. These instruments permit the BL to provide new and improved MS services of lipids, proteins, and peptides. Clinical biomarker analysis services will be expanded to enhance support of ongoing clinical studies.

Public Health Relevance

The BL is widely used by Center investigators from each program: 15 from Cell Growth and Survival;13 from Cellular Damage and Defense;and 7 from the Clinical Research Program. BL services provide specialized technologies to identify and characterize biological molecules to enable understanding their roles in basic biochemical mechanisms of cancer, cell proliferation, cell signaling, and DNA damage. The central availability of these shared resources insures availability, stability, reliability, and quality control.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wake Forest University Health Sciences
United States
Zip Code
Xiao, Jiajie; Melvin, Ryan L; Salsbury Jr, Freddie R (2018) Probing light chain mutation effects on thrombin via molecular dynamics simulations and machine learning. J Biomol Struct Dyn :1-18
Mao, Chengqiong; Zhao, Yan; Li, Fang et al. (2018) P-glycoprotein targeted and near-infrared light-guided depletion of chemoresistant tumors. J Control Release 286:289-300
Diaz-Garelli, Jose-Franck; Wells, Brian J; Yelton, Caleb et al. (2018) Biopsy Records Do Not Reduce Diagnosis Variability in Cancer Patient EHRs: Are We More Uncertain After Knowing? AMIA Jt Summits Transl Sci Proc 2017:72-80
Wang, Mingxuan; Chen, Haiqin; Ailati, Aisikaer et al. (2018) Substrate specificity and membrane topologies of the iron-containing ?3 and ?6 desaturases from Mortierella alpina. Appl Microbiol Biotechnol 102:211-223
Westcott, Marlena M; Clemens, Elene A; Holbrook, Beth C et al. (2018) The choice of linker for conjugating R848 to inactivated influenza virus determines the stimulatory capacity for innate immune cells. Vaccine 36:1174-1182
Ruiz, Jimmy; Miller, Antonius A; Tooze, Janet A et al. (2018) Frailty assessment predicts toxicity during first cycle chemotherapy for advanced lung cancer regardless of chronologic age. J Geriatr Oncol :
Levine, Edward A; Votanopoulos, Konstantinos I; Shen, Perry et al. (2018) A Multicenter Randomized Trial to Evaluate Hematologic Toxicities after Hyperthermic Intraperitoneal Chemotherapy with Oxaliplatin or Mitomycin in Patients with Appendiceal Tumors. J Am Coll Surg 226:434-443
Addington, Elizabeth L; Sohl, Stephanie J; Tooze, Janet A et al. (2018) Convenient and Live Movement (CALM) for women undergoing breast cancer treatment: Challenges and recommendations for internet-based yoga research. Complement Ther Med 37:77-79
Park, Sun H; Keller, Evan T; Shiozawa, Yusuke (2018) Bone Marrow Microenvironment as a Regulator and Therapeutic Target for Prostate Cancer Bone Metastasis. Calcif Tissue Int 102:152-162
Haas, Karen M; Johnson, Kristen L; Phipps, James P et al. (2018) CD22 Promotes B-1b Cell Responses to T Cell-Independent Type 2 Antigens. J Immunol 200:1671-1681

Showing the most recent 10 out of 548 publications