Mission: The Bioanalytical Laboratory (BL) is a heavily used shared resource of the Comprehensive Cancer Center with a mission to provide access to advanced analytical services, technologies and scientific consultation for DNA, protein, and lipid chemistry. The BL specializes in discovery, identification, characterization, and quantification of biomolecules including: structural analysis of proteins, peptides and lipids by mass spectrometry and biochemical methods;DNA sequence analysis;DNA/RNA synthesis; chromatography of proteins, peptides, DNA, and lipids;and quantification of clinical biomarkers in tissue and blood specimens. Assets: Assets of the BL include more than 10 major instrument systems and the expertise of its staff members. Co-directors, Drs. Mark Lively and Michael Thomas, are expert chemists with more than 50 years of combined experience in research and core laboratory management. Dr. Thomas is a lipid mass spectrometry expert. Dr. Lively is a founding member and former president of the Association of Biomolecular Resource Facilities (ABRF). He is a member of the National Advisory Research Resources Council of the NIH National Center for Research Resources. The BL technicians have more than 80 years of combined laboratory experience. Usage: The BL supported the research of 73 Center members from 11/2009 -10/2010, analyzing 10,234 samples. The most heavily used services were: mass spectrometry methods (4,018 spls);DNA sequencing (4,299 spIs);biomarker HPLC (746 spIs);protein/peptide methods (248 spIs);and DNA synthesis (182 spIs). Center members received 60% of the services performed. Future directions: The BL recently added two important new mass spectrometers, a ThermoFisher TSQ Discovery Max electrospray, triple quadrupole mass spectrometer, to enhance the study of polar lipids and a ThermoFisher TSQ Quantum XLS triple quadrupole gas-chromatograph (GC) mass spectrometer. An Advion Nanomate? source was acquired for the Q-TOF mass spectrometer for proteomics. These instruments permit the BL to provide new and improved MS services of lipids, proteins, and peptides. Clinical biomarker analysis services will be expanded to enhance support of ongoing clinical studies.

Public Health Relevance

The BL is widely used by Center investigators from each program: 15 from Cell Growth and Survival;13 from Cellular Damage and Defense;and 7 from the Clinical Research Program. BL services provide specialized technologies to identify and characterize biological molecules to enable understanding their roles in basic biochemical mechanisms of cancer, cell proliferation, cell signaling, and DNA damage. The central availability of these shared resources insures availability, stability, reliability, and quality control.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA012197-39
Application #
8617235
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
39
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Wake Forest University Health Sciences
Department
Type
DUNS #
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Su, Weijun; Hong, Lixin; Xu, Xin et al. (2018) miR-30 disrupts senescence and promotes cancer by targeting both p16INK4A and DNA damage pathways. Oncogene 37:5618-5632
Miller Jr, David P; Denizard-Thompson, Nancy; Weaver, Kathryn E et al. (2018) Effect of a Digital Health Intervention on Receipt of Colorectal Cancer Screening in Vulnerable Patients: A Randomized Controlled Trial. Ann Intern Med 168:550-557
Rimkus, Tadas K; Carpenter, Richard L; Sirkisoon, Sherona et al. (2018) Truncated Glioma-Associated Oncogene Homolog 1 (tGLI1) Mediates Mesenchymal Glioblastoma via Transcriptional Activation of CD44. Cancer Res 78:2589-2600
Bonin, Keith; Smelser, Amanda; Moreno, Naike Salvador et al. (2018) Structured illumination to spatially map chromatin motions. J Biomed Opt 23:1-8
Rogers, LeAnn C; Davis, Ryan R; Said, Naveen et al. (2018) Blocking LPA-dependent signaling increases ovarian cancer cell death in response to chemotherapy. Redox Biol 15:380-386
Maggiore, Ronald J; Callahan, Kathryn E; Tooze, Janet A et al. (2018) Geriatrics fellowship training and the role of geriatricians in older adult cancer care: A survey of geriatrics fellowship directors. Gerontol Geriatr Educ 39:170-182
Melvin, Ryan L; Xiao, Jiajie; Godwin, Ryan C et al. (2018) Visualizing correlated motion with HDBSCAN clustering. Protein Sci 27:62-75
Faig, Jennifer; Haughton, Michael; Taylor, Richard C et al. (2018) Retrospective Analysis of Cisplatin Nephrotoxicity in Patients With Head and Neck Cancer Receiving Outpatient Treatment With Concurrent High-dose Cisplatin and Radiotherapy. Am J Clin Oncol 41:432-440
Nelson, Kimberly J; Perkins, Arden; Van Swearingen, Amanda E D et al. (2018) Experimentally Dissecting the Origins of Peroxiredoxin Catalysis. Antioxid Redox Signal 28:521-536
Swanner, Jessica; Singh, Ravi (2018) Synthesis, Purification, Characterization, and Imaging of Cy3-Functionalized Fluorescent Silver Nanoparticles in 2D and 3D Tumor Models. Methods Mol Biol 1790:209-218

Showing the most recent 10 out of 548 publications