The Comprehensive Cancer Center of Wake Forest University (CCCWFU) serves a large region in western North Carolina and contiguous regions in six adjoining states. In the last grant period, overall peer-reviewed cancer funding increased from $26 to $31 million (direct) and NCI funding increased from $12.2 to $17.7 million. Our NCI funding has increased 3.5 fold since 2000. Notable achievements include: Interdisciplinary and transdisciplinary interactions: Interprogrammatic and intraprogrammatic publications comprise 22% and 37% of publications in the Cellular Damage and Defense Program (CDD), 24% and 21% of those in the Cell Growth and Survival Program (COS), 22% and 40% in the Cancer Prevention and Control Program (CPC), and 22% and 22% of publications in the Clinical Research Program (CRP). Further, in 67%) of the peer-reviewed research grants in Summary II, CCCWFU principal investigators collaborate with other Cancer Center members as co-investigators or consultants These collaborative efforts are at highest levels since our Cancer Center began collecting these metrics. Innovative translational investigations: From our own preclinical science, we developed a portfolio of therapeutic and imaging clinical investigations. We also initiated nationally prominent programs in prostate cancer genetics, and, using our NCI-funded CCOP research base, led large-scale clinical trials in symptom management. Quality scientific contributions: Whether measured by high impact publications, NCI funding, or indisputably important contributions to cancer science and cancer care, CCCWFU investigators made important contributions to the national cancer effort. Support is requested for Cancer Center Support Grant for Years 37 through 41. The Center has four Programs: Cell Growth and Survival, Cellular Damage and Defense, Clinical Research, and Cancer Prevention and Control. Support is also requested for 9 shared resources: Bioanalytical Laboratory, Biostatistics, Cell and Viral Vector Core Laboratory, Cellular Imaging, Clinical Research Management, Crystallography and Computational Biosciences, Flow Cytometry, Microarray, and Tumor Tissue. For the next funding cycle, we have carefully crafted a strategic plan to reduce the burden of cancer in our region and in the nation.

Public Health Relevance

The Center serves a geographically contiguous, primarily rural area that spans seven states. In this region, the CCCWFU is the primary tertiary center for cancer care. The region has complex racial and ethnic populations that have traditionally not had access to state-of-the-art cancer prevention and treatment. The CCCWFU will not only continue to develop new areas of cancer treatment and prevention, but assure that our region has access to these advances.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA012197-40
Application #
8792172
Study Section
Subcommittee G - Education (NCI)
Program Officer
Ptak, Krzysztof
Project Start
1997-02-01
Project End
2017-01-31
Budget Start
2015-02-01
Budget End
2016-01-31
Support Year
40
Fiscal Year
2015
Total Cost
$1,464,338
Indirect Cost
$474,338
Name
Wake Forest University Health Sciences
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Lu, Yong; Wang, Qiang; Xue, Gang et al. (2018) Th9 Cells Represent a Unique Subset of CD4+ T Cells Endowed with the Ability to Eradicate Advanced Tumors. Cancer Cell 33:1048-1060.e7
Godwin, Ryan C; Macnamara, Lindsay M; Alexander, Rebecca W et al. (2018) Structure and Dynamics of tRNAMet Containing Core Substitutions. ACS Omega 3:10668-10678
Peak, Taylor C; Praharaj, Prakash P; Panigrahi, Gati K et al. (2018) Exosomes secreted by placental stem cells selectively inhibit growth of aggressive prostate cancer cells. Biochem Biophys Res Commun 499:1004-1010
Akter, Salma; Fu, Ling; Jung, Youngeun et al. (2018) Chemical proteomics reveals new targets of cysteine sulfinic acid reductase. Nat Chem Biol 14:995-1004
Han, Fei; Li, Chien-Feng; Cai, Zhen et al. (2018) The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat Commun 9:4728
Chmielewski, Jeffrey P; Bowlby, Sarah C; Wheeler, Frances B et al. (2018) CD38 Inhibits Prostate Cancer Metabolism and Proliferation by Reducing Cellular NAD+ Pools. Mol Cancer Res 16:1687-1700
Nelson, Kimberly J; Bolduc, Jesalyn A; Wu, Hanzhi et al. (2018) H2O2 oxidation of cysteine residues in c-Jun N-terminal kinase 2 (JNK2) contributes to redox regulation in human articular chondrocytes. J Biol Chem 293:16376-16389
Xing, Fei; Liu, Yin; Wu, Shih-Ying et al. (2018) Loss of XIST in Breast Cancer Activates MSN-c-Met and Reprograms Microglia via Exosomal miRNA to Promote Brain Metastasis. Cancer Res 78:4316-4330
Bolduc, Jesalyn A; Nelson, Kimberly J; Haynes, Alexina C et al. (2018) Novel hyperoxidation resistance motifs in 2-Cys peroxiredoxins. J Biol Chem 293:11901-11912
Farris, Michael; McTyre, Emory R; Okoukoni, Catherine et al. (2018) Cortical Thinning and Structural Bone Changes in Non-Human Primates after Single-Fraction Whole-Chest Irradiation. Radiat Res 190:63-71

Showing the most recent 10 out of 548 publications