Next-generation sequencing (NGS) and microarray technologies are essential resources for investigating the genomic and molecular underpinnings of cancer formation, progression, and clinical outcomes. The primary objective of the Cancer Genomics Shared Resource (CGSR) is to maximize the scientific and clinical impact of research by Wake Forest Baptist Comprehensive Cancer Center (WFBCCC) members. This is accomplished by providing rapid and cost-effective access to state-of-the-art genomic technologies, while creating a unifying environment that cultivates scientific awareness, education, and collaboration. The CGSR supports the WFBCCC's mission by providing cancer-prioritized access to comprehensive microarray and NGS technologies and offers seamless data flow through to the Biostatistics and Bioinformatics Shared Resource - for bioinformatics support. In October 2014, at the instigation of Director Pasche, the former Microarray Core Laboratory (2002-2014; which received a score of ?excellent? in the prior critique) was renamed the Cancer Genomics Shared Resource to reflect the integration of the WFBCCC's microarray core competencies with the NGS expertise of the Center for Genomics and Personalized Medicine Research. This new joint-Center partnership reflects the strategic plans of the WFBCCC and the Wake Forest School of Medicine (WFSOM), as well as supporting priority recommendations of the WFSOM Centers and Cores Advisory Committee. The CGSR provides cutting-edge genomic services, prioritizes cancer-specific research, creates an optimal environment for the Institution's rapidly developing precision medicine initiative, and seamlessly integrates with other key Shared Resources within the WFBCCC to promote integrated, high-quality workflows for cancer genomics research. The CGSR is led by Co-Directors Lance Miller, Ph.D., and Greg Hawkins, Ph.D., who have established records in cancer genomics research, and is operated by four experienced technicians (two at 100% effort, one at 50% effort and one at 5% effort). A bioinformatician devotes 30% of effort to CGSR daily operations. In the most recent grant year (11/01/14-10/31/15), the CGSR operated at 80-90% FTE utilization to provide 1,144 services to 20 investigators, 75% of which were WFBCCC investigators. Compared to previous years, the CGSR doubled its service output and increased its cancer-specific service output by approximately 50%. The CGSR directly contributes to the scientific achievements of WFBCCC investigators by generating high-quality and cost-effective data that will translate into new discoveries, publications, grant awards, and grant applications. Further development of CGSR's role in supporting the development and productivity of WFBCCC Disease-Oriented Teams and the continued development of seamless workflows across Shared Resources are expected to enhance translational genomics initiatives at the WFBCCC.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee H - Clinical Groups (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wake Forest University Health Sciences
United States
Zip Code
Su, Weijun; Hong, Lixin; Xu, Xin et al. (2018) miR-30 disrupts senescence and promotes cancer by targeting both p16INK4A and DNA damage pathways. Oncogene 37:5618-5632
Miller Jr, David P; Denizard-Thompson, Nancy; Weaver, Kathryn E et al. (2018) Effect of a Digital Health Intervention on Receipt of Colorectal Cancer Screening in Vulnerable Patients: A Randomized Controlled Trial. Ann Intern Med 168:550-557
Rimkus, Tadas K; Carpenter, Richard L; Sirkisoon, Sherona et al. (2018) Truncated Glioma-Associated Oncogene Homolog 1 (tGLI1) Mediates Mesenchymal Glioblastoma via Transcriptional Activation of CD44. Cancer Res 78:2589-2600
Bonin, Keith; Smelser, Amanda; Moreno, Naike Salvador et al. (2018) Structured illumination to spatially map chromatin motions. J Biomed Opt 23:1-8
Rogers, LeAnn C; Davis, Ryan R; Said, Naveen et al. (2018) Blocking LPA-dependent signaling increases ovarian cancer cell death in response to chemotherapy. Redox Biol 15:380-386
Maggiore, Ronald J; Callahan, Kathryn E; Tooze, Janet A et al. (2018) Geriatrics fellowship training and the role of geriatricians in older adult cancer care: A survey of geriatrics fellowship directors. Gerontol Geriatr Educ 39:170-182
Melvin, Ryan L; Xiao, Jiajie; Godwin, Ryan C et al. (2018) Visualizing correlated motion with HDBSCAN clustering. Protein Sci 27:62-75
Faig, Jennifer; Haughton, Michael; Taylor, Richard C et al. (2018) Retrospective Analysis of Cisplatin Nephrotoxicity in Patients With Head and Neck Cancer Receiving Outpatient Treatment With Concurrent High-dose Cisplatin and Radiotherapy. Am J Clin Oncol 41:432-440
Nelson, Kimberly J; Perkins, Arden; Van Swearingen, Amanda E D et al. (2018) Experimentally Dissecting the Origins of Peroxiredoxin Catalysis. Antioxid Redox Signal 28:521-536
Swanner, Jessica; Singh, Ravi (2018) Synthesis, Purification, Characterization, and Imaging of Cy3-Functionalized Fluorescent Silver Nanoparticles in 2D and 3D Tumor Models. Methods Mol Biol 1790:209-218

Showing the most recent 10 out of 548 publications