The major goals of the Neuro-Oncology (NRO) Program are to understand the molecular mechanisms that are involved in the etiopathogenesis and progression of primary brain tumors and metastases to brain, and to use this knowledge to better manage patients with these malignancies; they belong to a high incidence/high mortality population in the Wake Forest Baptist Comprehensive Cancer Center (WFBCCC) catchment area. The mission of the Program is to develop a comprehensive initiative that yields significant improvements in the management of patients with primary brain tumors and metastases to the brain. This will be achieved by the Program members? research around three aims: 1) cancer stem-like cells (mechanisms regulating participation of these cells in cancer initiation and progression, and those that are potential targets for therapeutics), 2) novel approaches to treatment (identifying new therapeutic strategies including those that lead to improved delivery of drugs to the CNS), and 3) clinical investigations (leverages the rich history of early phase clinical brain tumor research at the WFBCCC through long-standing participation in the Adult Brain Tumor Consortium (ABTC), other national brain tumor collaborations, as well as investigator-initiated trials). The research of the NRO Program focuses particularly on malignant gliomas, including glioblastoma, and breast and lung cancer brain metastases. More specifically, the Program?s Specific Aims are addressed as follows:
Aim 1 is to determine the role of cancer stem-like cells in tumor initiation and/or progression through studying signaling pathways and interactions with other cell types present in the tumor microenvironment and normal brain;
Aim 2 is to develop novel devices, techniques, drug candidates and therapeutic approaches for these difficult-to-treat cancers based on a variety of experimental platforms;
Aim 3 is to conduct innovative clinical interventions which will affect the course of the disease and the well-being of patients. The Program has 20 members from 12 different departments or sections. Annual extramural funding of program members was ~ $253,000 per member. Among the members' 53 publications, 34% were intra-programmatic, 32% were inter-programmatic, and 51% were inter-institutional, demonstrating the collaborative spirit and national and international stature of the Program?s research and investigators.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA012197-46
Application #
10093008
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-02-01
Project End
2022-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
46
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Wake Forest University Health Sciences
Department
Type
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Bonin, Keith; Smelser, Amanda; Moreno, Naike Salvador et al. (2018) Structured illumination to spatially map chromatin motions. J Biomed Opt 23:1-8
Rimkus, Tadas K; Carpenter, Richard L; Sirkisoon, Sherona et al. (2018) Truncated Glioma-Associated Oncogene Homolog 1 (tGLI1) Mediates Mesenchymal Glioblastoma via Transcriptional Activation of CD44. Cancer Res 78:2589-2600
Maggiore, Ronald J; Callahan, Kathryn E; Tooze, Janet A et al. (2018) Geriatrics fellowship training and the role of geriatricians in older adult cancer care: A survey of geriatrics fellowship directors. Gerontol Geriatr Educ 39:170-182
Rogers, LeAnn C; Davis, Ryan R; Said, Naveen et al. (2018) Blocking LPA-dependent signaling increases ovarian cancer cell death in response to chemotherapy. Redox Biol 15:380-386
Faig, Jennifer; Haughton, Michael; Taylor, Richard C et al. (2018) Retrospective Analysis of Cisplatin Nephrotoxicity in Patients With Head and Neck Cancer Receiving Outpatient Treatment With Concurrent High-dose Cisplatin and Radiotherapy. Am J Clin Oncol 41:432-440
Melvin, Ryan L; Xiao, Jiajie; Godwin, Ryan C et al. (2018) Visualizing correlated motion with HDBSCAN clustering. Protein Sci 27:62-75
Swanner, Jessica; Singh, Ravi (2018) Synthesis, Purification, Characterization, and Imaging of Cy3-Functionalized Fluorescent Silver Nanoparticles in 2D and 3D Tumor Models. Methods Mol Biol 1790:209-218
Nelson, Kimberly J; Perkins, Arden; Van Swearingen, Amanda E D et al. (2018) Experimentally Dissecting the Origins of Peroxiredoxin Catalysis. Antioxid Redox Signal 28:521-536
Feliz-Mosquea, Yismeilin R; Christensen, Ashley A; Wilson, Adam S et al. (2018) Combination of anthracyclines and anti-CD47 therapy inhibit invasive breast cancer growth while preventing cardiac toxicity by regulation of autophagy. Breast Cancer Res Treat 172:69-82
Holmila, Reetta J; Vance, Stephen A; Chen, Xiaofei et al. (2018) Mitochondria-targeted Probes for Imaging Protein Sulfenylation. Sci Rep 8:6635

Showing the most recent 10 out of 548 publications