The goal of the Small Animal Imaging Shared Facility is to support imaging in small animal pre-clinical models, including early detection of cancer and evaluation of therapy. It accomplishes the goal through the following specific aims: (1) To provide state-of-the-art molecular imaging for preclinical studies in small animals, and support transition to human imaging studies;(2) To provide training to Cancer Center members in the applications of molecular imaging in cancer models;(3) To establish methods for image analyses;(4) To maintain the instruments and keep them accurately calibrated;and (5) To develop novel imaging technologies and acquire new instruments. The Small Animal Imaging Shared Facility had its genesis during the last core grant renewal and now fulfills a critical CCC priority by supporting over 50 members in 6 programs with preclinical imaging studies for detection of cancer and therapy evaluation. The facility provides detailed imaging evaluation of new cancer treatments, and thereby accelerates their translation to human trials. The facility will coordinate existing support mechanisms for imaging at UAB, and significantly expand the imaging effort by collaborating with the Human Imaging Facility to translate clinically relevant imaging to humans. Imaging components include structural and metabolic imaging (MRI/MRS, high frequency ultrasonography and microCT), gamma-ray imaging (gamma camera, microSPECT/CT, microPET/CT), and optical imaging (bioluminescence and fluorescence). The facility has undertaken a multimodality imaging approach to provide a molecular understanding of cancer in animal models by integrating measurements of tumor mass (bioluminescence, ultrasound, CT, and MR), tumor specific targeting (SPECT, ultrasound, fluorescence, microPET), vascular parameters (ultrasound, MR), and specific therapy responses (ultrasound, bioluminescence, SPECT, MR, micoPET). Each imaging modality has advantages and their coordinated application is synergistic. The facility meets a critical need in evaluation of new therapies for cancer in animal models, thereby enabling translation of the new therapies to human trials. The facility will enhance the potential of other CCC shared facilities (High Resolution Imaging, Tissue Procurement, Mass Spectrometry/Proteonomics, Transgenic Animal, Human Imaging) by providing real-time imaging of molecular pathways in the living animal, enabling precise tissue sampling and microanalyses, and facilitating translation to human studies.

Public Health Relevance

Small-animal imaging offers an accurate, efficient, and time-saving mechanism to repeatedly evaluate cancer treatment efficacy in preclinical models, thus facilitating the translation of novel therapies to humans.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA013148-42
Application #
8738172
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
42
Fiscal Year
2014
Total Cost
$162,314
Indirect Cost
$63,251
Name
University of Alabama Birmingham
Department
Type
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Jimenez, Rachel V; Wright, Tyler T; Jones, Nicholas R et al. (2018) C-Reactive Protein Impairs Dendritic Cell Development, Maturation, and Function: Implications for Peripheral Tolerance. Front Immunol 9:372
Engle, Staci E; Antonellis, Patrick J; Whitehouse, Logan S et al. (2018) A CreER mouse to study melanin concentrating hormone signaling in the developing brain. Genesis 56:e23217
Van Arsdale, Anne R; Arend, Rebecca C; Cossio, Maria J et al. (2018) Insulin-like growth factor 2: a poor prognostic biomarker linked to racial disparity in women with uterine carcinosarcoma. Cancer Med 7:616-625
Kim, Harrison (2018) Modification of population based arterial input function to incorporate individual variation. Magn Reson Imaging 45:66-71
Leath 3rd, Charles A; Monk, Bradley J (2018) Twenty-first century cervical cancer management: A historical perspective of the gynecologic oncology group/NRG oncology over the past twenty years. Gynecol Oncol 150:391-397
Park, Misun; Yoon, Young Sup (2018) Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes. Korean Circ J 48:974-988
Toboni, Michael D; Smith, Haller J; Bae, Sejong et al. (2018) Predictors of Unplanned Reoperation for Ovarian Cancer Patients From the National Surgical Quality Improvement Program Database. Int J Gynecol Cancer 28:1427-1431
Dionne-Odom, J Nicholas; Applebaum, Allison J; Ornstein, Katherine A et al. (2018) Participation and interest in support services among family caregivers of older adults with cancer. Psychooncology 27:969-976
Demark-Wahnefried, Wendy; Schmitz, Kathryn H; Alfano, Catherine M et al. (2018) Weight management and physical activity throughout the cancer care continuum. CA Cancer J Clin 68:64-89
Bandari, Shyam K; Purushothaman, Anurag; Ramani, Vishnu C et al. (2018) Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol 65:104-118

Showing the most recent 10 out of 747 publications