The Stem Cells, Differentiation and Cancer Program evolved from the former Cell Growth and Differentiation Control Program with the inclusion of scientists from the former Immuno-oncology program that study B cell biology and lymphoid malignancies. The program was further strengthened by the formation of a Stem Cell Institute at Einstein with the recruitment of four cancer stem cell investigators. There are three major research themes that partially overlap: the myeloid leukemias, lymphoid malignancies and stem cell biology, with a continued emphasis on regulation at the transcriptional level. While there is a focus on hematological malignancies, the stem cell research extends to hepatic, neural, and mammary stem cells. Dr. E. Richard Stanley is leader of this newly configured program. The appointment of Dr. Amit Verma, physician scientist, as Co-Program leader and the establishment of a Hematological Malignancies Working Group has catalyzed translation and increased the number of correlative and therapeutic clinical studies. The goals of this program are: (i) to understand the molecular events that occur during the normal differentiation of stem cell progenitors into their mature counterparts; (ii) to identify the aberrations that occur in transcriptional programming that result in the malignant phenotype with a special, but not sole, focus on the hematopoietic malignancies;(iii) to identify molecules that are novel therapeutic targets, indicators of aggressiveness of disease or reporters of response to treatment;(iv) to translate laboratory research findings into correlative and, ultimately, therapeutic trials and to enhance the effectiveness of clinical regimens with existing and new chemotherapeutics and biologicals;and (v) to encourage those Program members who share a common interest in stem cells, cellular programming, and their relationship to cancer to collaborate with each other and with the members of other programs. Human tissue research has been facilitated by the acquisition of two FACS Sorter Biosafety systems dedicated to this program, a Human Pluripotent Stem Cell Center for the development and analysis of human embryonic and induced pluripotent stem cells that comprises a stem cell preparation unit, a cell sorting and xenotransplantation unit, and a stem cell bioinformatics unit. There are currently 31 program members of whom 30 are primary;nine are new recruits to Einstein. Research is supported by 12 NCI grants ($2.66M DC) and 28 other cancer-relevant peer reviewed grants ($5.35M DC). Since 2008, there have been 364 cancer-relevant publications by members of this program, of which 16% represent intra- and 17% represent inter-programmatic collaborations.

Public Health Relevance

This program seeks to understand the very early changes that occur in the genetic material of cells that makes them cancerous and to develop drugs that will prevent or reverse these changes. There is a particular interest in identifying the most primitive cells (called cancer stem cells) that are affected by these changes. Cancer stem cells may be the most resistant to drugs and radiation and may explain why cancers return after they initially respond to treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA013330-41
Application #
8753333
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
2014-07-01
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
41
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
City
Bronx
State
NY
Country
United States
Zip Code
10461
Agalliu, Ilir; Chen, Zigui; Wang, Tao et al. (2018) Oral Alpha, Beta, and Gamma HPV Types and Risk of Incident Esophageal Cancer. Cancer Epidemiol Biomarkers Prev 27:1168-1175
Bhargava, Ragini; Sandhu, Manbir; Muk, Sanychen et al. (2018) C-NHEJ without indels is robust and requires synergistic function of distinct XLF domains. Nat Commun 9:2484
Collu, Giovanna M; Jenny, Andreas; Gaengel, Konstantin et al. (2018) Prickle is phosphorylated by Nemo and targeted for degradation to maintain Prickle/Spiny-legs isoform balance during planar cell polarity establishment. PLoS Genet 14:e1007391
Doyle, Christopher R; Moon, Jee-Young; Daily, Johanna P et al. (2018) A Capsular Polysaccharide-Specific Antibody Alters Streptococcus pneumoniae Gene Expression during Nasopharyngeal Colonization of Mice. Infect Immun 86:
Anayannis, Nicole V; Schlecht, Nicolas F; Ben-Dayan, Miriam et al. (2018) Association of an intact E2 gene with higher HPV viral load, higher viral oncogene expression, and improved clinical outcome in HPV16 positive head and neck squamous cell carcinoma. PLoS One 13:e0191581
Stepankova, Martina; Bartonkova, Iveta; Jiskrova, Eva et al. (2018) Methylindoles and Methoxyindoles are Agonists and Antagonists of Human Aryl Hydrocarbon Receptor. Mol Pharmacol 93:631-644
Maggi, Elaine C; Gravina, Silvia; Cheng, Haiying et al. (2018) Development of a Method to Implement Whole-Genome Bisulfite Sequencing of cfDNA from Cancer Patients and a Mouse Tumor Model. Front Genet 9:6
Ingram, Jessica R; Blomberg, Olga S; Rashidian, Mohammad et al. (2018) Anti-CTLA-4 therapy requires an Fc domain for efficacy. Proc Natl Acad Sci U S A 115:3912-3917
Dulyaninova, Natalya G; Ruiz, Penelope D; Gamble, Matthew J et al. (2018) S100A4 regulates macrophage invasion by distinct myosin-dependent and myosin-independent mechanisms. Mol Biol Cell 29:632-642
Chen, Zigui; Schiffman, Mark; Herrero, Rolando et al. (2018) Classification and evolution of human papillomavirus genome variants: Alpha-5 (HPV26, 51, 69, 82), Alpha-6 (HPV30, 53, 56, 66), Alpha-11 (HPV34, 73), Alpha-13 (HPV54) and Alpha-3 (HPV61). Virology 516:86-101

Showing the most recent 10 out of 1508 publications