Imaging plays a vital role in the research programs of many AECC members. The Analytical Imaging Facility (AIF) makes routine and complex imaging technologies available to the entire AECC community. Microscope technology ranges from traditional brightfield, to epi-fluorescence, to laser scanning confocal, to high resolution transmission and scanning electron microscopy including cryoEM of macromolecules in this truly comprehensive shared resource. This wide range of imaging modalities allows for the study of animal models of disease. Cells expressing or labeled with fluorescent reporter molecules may be imaged in the whole animal, whole organ, single cell or cell compartments. Live cells may be imaged in real time to monitor physiological processes. Photo-activatable fluorescence molecules may be manipulated by light for dynamic in vivo studies. Confocal microscopes and epi-fluorescence paired with deconvolution enables 3D imaging of fixed material or 4D imaging of live cells. Traditional ultrastructure analysis by transmission electron microscopy is expanded to 3D by electron tomography. The recent installation of a field emission scanning electron microscope (SEM) has expanded the facility's SEM capabilities to include automated large area mapping, 3D image reconstruction, x-ray microanalysis, correlative fluorescence and SEM imaging and imaging frozen hydrated samples. AIF staff assist users in experimental design, data collection, quantitative image analysis and presentation. New users are taught imaging techniques required for their specific research objective, while experienced users may customize any imaging station, utilizing the facility's large inventory of optics and accessories. The facility offers customized full service sample preparation for electron microscopy, to ensure quality control and to offer the widest range of techniques. The AIF staff has the expertise to prepare samples by methods that include chemical fixation, embedding in resin, ultrathin sectioning, immunogold labeling and negative staining. The facility offers a full range of low temperature techniques for electron microscopy including quick freezing by plunge, metal mirror or high pressure freezing. Frozen samples can undergo freeze-substitution, freeze fracture, rotary shadow or cryosectioning and are then imaged in the TEM or SEM at ambient or low temperature. The AIF provides support for the microscopy requirements of the Molecular Cytogenetics and Histopathology Shared Resources. Since the last CCSG review, important new additions of equipment, personnel and services have been made, which have substantially enhanced the imaging capabilities at AECC.

Public Health Relevance

The Analytical Imaging Facility provides microscope imaging technologies and quantitative image analysis supporting the translational research mission and goals of the Albert Einstein Cancer Center (AECC). As an NCI-designated Cancer Center, AECC contributes to the national effort to reduce morbidity and mortality from cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA013330-41
Application #
8753334
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
41
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
City
Bronx
State
NY
Country
United States
Zip Code
10461
Xie, Xianhong; Xue, Xiaonan; Strickler, Howard D (2018) Generalized linear mixed model for binary outcomes when covariates are subject to measurement errors and detection limits. Stat Med 37:119-136
Li, Ke; Baker, Nicholas E (2018) Regulation of the Drosophila ID protein Extra macrochaetae by proneural dimerization partners. Elife 7:
Boku, S; Izumi, T; Abe, S et al. (2018) Copy number elevation of 22q11.2 genes arrests the developmental maturation of working memory capacity and adult hippocampal neurogenesis. Mol Psychiatry 23:985-992
Carvajal, Luis A; Neriah, Daniela Ben; Senecal, Adrien et al. (2018) Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci Transl Med 10:
Mendez-Dorantes, Carlos; Bhargava, Ragini; Stark, Jeremy M (2018) Repeat-mediated deletions can be induced by a chromosomal break far from a repeat, but multiple pathways suppress such rearrangements. Genes Dev 32:524-536
Kushnir, Alexander; Santulli, Gaetano; Reiken, Steven R et al. (2018) Ryanodine Receptor Calcium Leak in Circulating B-Lymphocytes as a Biomarker in Heart Failure. Circulation 138:1144-1154
Schloss, Jennifer; Ali, Riyasat; Racine, Jeremy J et al. (2018) HLA-B*39:06 Efficiently Mediates Type 1 Diabetes in a Mouse Model Incorporating Reduced Thymic Insulin Expression. J Immunol 200:3353-3363
Ruiz, Penelope D; Gamble, Matthew J (2018) MacroH2A1 chromatin specification requires its docking domain and acetylation of H2B lysine 20. Nat Commun 9:5143
Van Arsdale, Anne R; Arend, Rebecca C; Cossio, Maria J et al. (2018) Insulin-like growth factor 2: a poor prognostic biomarker linked to racial disparity in women with uterine carcinosarcoma. Cancer Med 7:616-625
Walters, Ryan O; Arias, Esperanza; Diaz, Antonio et al. (2018) Sarcosine Is Uniquely Modulated by Aging and Dietary Restriction in Rodents and Humans. Cell Rep 25:663-676.e6

Showing the most recent 10 out of 1508 publications