- BIOSTATISTICS SHARED RESOURCE The increasing variety and complexity of data types, analytic approaches and study designs utilized in cancer research necessitate the availability of an organized and centralized biostatistics resource that can offer a wide range of statistical expertise, collaboration, and training opportunities to investigators at the Albert Einstein Cancer Center (AECC). The Biostatistics Shared Resource (BSR) is staffed by experienced statisticians with strong track records in effective collaboration across all scientific programs, innovative research in cancer relevant statistical areas, and training and mentoring investigators at all levels. BSR personnel have critical roles in enhancing the Center infrastructure and fostering multi-disciplinary team science given their broad knowledge of the scope of research activities within the AECC and active involvement on various cancer center committees. The specific objectives of the BSR are: (i) To provide state-of-the-art statistical support on all phases of cancer research, from experimental design and study conduct to data analysis and manuscript preparation; (ii) To collaborate on the development of methodologically rigorous grant applications and new research initiatives; (iii) To assist with the development and scientific review of clinical trial protocols; (iv) To develop innovative statistical approaches for new technologies in cancer research; (v) To offer a variety of training opportunities in statistical methods to AECC members and to mentor junior cancer investigators; (vi) To enhance the AECC infrastructure and foster interdisciplinary collaborations via participation on scientific and administrative committees and interactions with other shared resources. The overall goal in accomplishing these objectives is to provide a robust, comprehensive and cost-effective system of statistical support for AECC investigators that contributes significantly to advancing the understanding of cancer etiologies and prognosis, as well as improving cancer prevention, detection and treatment strategies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA013330-48
Application #
9998873
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-06-01
Project End
2022-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
48
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
081266487
City
Bronx
State
NY
Country
United States
Zip Code
10461
Ruiz, Penelope D; Gamble, Matthew J (2018) MacroH2A1 chromatin specification requires its docking domain and acetylation of H2B lysine 20. Nat Commun 9:5143
Van Arsdale, Anne R; Arend, Rebecca C; Cossio, Maria J et al. (2018) Insulin-like growth factor 2: a poor prognostic biomarker linked to racial disparity in women with uterine carcinosarcoma. Cancer Med 7:616-625
Walters, Ryan O; Arias, Esperanza; Diaz, Antonio et al. (2018) Sarcosine Is Uniquely Modulated by Aging and Dietary Restriction in Rodents and Humans. Cell Rep 25:663-676.e6
Rohan, Thomas; Ye, Kenny; Wang, Yihong et al. (2018) MicroRNA expression in benign breast tissue and risk of subsequent invasive breast cancer. PLoS One 13:e0191814
Frimer, Marina; Miller, Eirwen M; Shankar, Viswanathan et al. (2018) Adjuvant Pelvic Radiation ""Sandwiched"" Between Paclitaxel/Carboplatin Chemotherapy in Women With Completely Resected Uterine Serous Carcinoma: Long-term Follow-up of a Prospective Phase 2 Trial. Int J Gynecol Cancer 28:1781-1788
Racine, Jeremy J; Stewart, Isabel; Ratiu, Jeremy et al. (2018) Improved Murine MHC-Deficient HLA Transgenic NOD Mouse Models for Type 1 Diabetes Therapy Development. Diabetes 67:923-935
Lee, Chang-Hyun; Kiparaki, Marianthi; Blanco, Jorge et al. (2018) A Regulatory Response to Ribosomal Protein Mutations Controls Translation, Growth, and Cell Competition. Dev Cell 46:456-469.e4
Kale, Abhijit; Ji, Zhejun; Kiparaki, Marianthi et al. (2018) Ribosomal Protein S12e Has a Distinct Function in Cell Competition. Dev Cell 44:42-55.e4
Mocholi, Enric; Dowling, Samuel D; Botbol, Yair et al. (2018) Autophagy Is a Tolerance-Avoidance Mechanism that Modulates TCR-Mediated Signaling and Cell Metabolism to Prevent Induction of T Cell Anergy. Cell Rep 24:1136-1150
Mao, Serena P H; Park, Minji; Cabrera, Ramon M et al. (2018) Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth. Breast Cancer Res 20:131

Showing the most recent 10 out of 1508 publications