The ideal specimen for conventional optical microscopy is two-dimensional. However, biological material is organized in three dimension. Using conventional fluorescence microscopy, all fluorescence generated over the depth of a biological specimen reaches the image plane. As a result, the material within the plane of focus is sharply imaged, and material outside of the focal plane produces contrast-reducing background. This problem is circumvented using confocal microscopy. With confocal microscopy, light originating from a laser-illuminated pinhole is focused on a certain point in an object. Fluorescence from the same point is subsequently imaged using a detector pinhole. Since the illumination pinhole and the back- projection of the detection pinhole have a common focus in the object, the only light that reaches the detector is that generated from the specimen layer, and virtually all out-of-focus fluorescence is eliminated from the image. Using confocal microscopy, we can resolve uptake of antisense DNA by cancer cells, organelle motility and inheritance during cell division, the effect of the tumor inducers on subcellular localization of proteins, and changes in cytoskeletal organization during establishment of cell polarization, cell migration and cell division. In January 1997, Dr. Liza Pon became the new director of the Cancer Center Confocal Microscopy Facility. She introduced a state-of-the-art Confocal Imaging System using funds obtained from a Shared Instrumentation Grant. The new Facility is now heavily used (ca. 6 hours/day) by Cancer Center members and other research scientists. The system consists of a Zeiss LSM 410 scanning laser confocal attachment mounted on a Zeiss Axiovert 100 TV inverted fluorescence microscope. Sample excitation and confocal image detection is accomplished using an argon-krypton laser and three highly sensitive photomultiplier detectors. This system is able to image up to three fluorophores simultaneously, and to obtain differential interference contrast (DIC) and phase contrast images. The software package for confocal image analysis offers three-dimensional reconstruction, stereoscopic display of three-dimensional images, time-lapse imaging, ratio imaging, photobleaching (e.g., FRAP), quantifying co-localization and morphometry. The combination of confocal microscopy with the inverted microscope and digital image analysis allows users to observe complex living or fixed system with greater accuracy and speed than ever before.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA013696-29S2
Application #
6585956
Study Section
Project Start
2001-07-01
Project End
2002-06-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
29
Fiscal Year
2002
Total Cost
$296,752
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
167204994
City
New York
State
NY
Country
United States
Zip Code
10032
Hernandez, Celine; Huebener, Peter; Pradere, Jean-Philippe et al. (2018) HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest 128:2436-2451
Proto, Jonathan D; Doran, Amanda C; Gusarova, Galina et al. (2018) Regulatory T Cells Promote Macrophage Efferocytosis during Inflammation Resolution. Immunity 49:666-677.e6
Kraakman, Michael J; Liu, Qiongming; Postigo-Fernandez, Jorge et al. (2018) PPAR? deacetylation dissociates thiazolidinedione's metabolic benefits from its adverse effects. J Clin Invest 128:2600-2612
Lee, Younghyun; Pujol Canadell, Monica; Shuryak, Igor et al. (2018) Candidate protein markers for radiation biodosimetry in the hematopoietically humanized mouse model. Sci Rep 8:13557
Evans, Lucy P; Newell, Elizabeth A; Mahajan, MaryAnn et al. (2018) Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice. Ann Clin Transl Neurol 5:240-251
Cui, Xuan; Jauregui, Ruben; Park, Karen Sophia et al. (2018) Multimodal characterization of a novel mutation causing vitamin B6-responsive gyrate atrophy. Ophthalmic Genet 39:512-516
Nathan, J; Ruscitto, A; Pylawka, S et al. (2018) Fibrocartilage Stem Cells Engraft and Self-Organize into Vascularized Bone. J Dent Res 97:329-337
Dieck, Chelsea L; Tzoneva, Gannie; Forouhar, Farhad et al. (2018) Structure and Mechanisms of NT5C2 Mutations Driving Thiopurine Resistance in Relapsed Lymphoblastic Leukemia. Cancer Cell 34:136-147.e6
Sengillo, Jesse D; Lee, Winston; Bakhoum, Mathieu F et al. (2018) CHOROIDEREMIA ASSOCIATED WITH A NOVEL SYNONYMOUS MUTATION IN GENE ENCODING REP-1. Retin Cases Brief Rep 12 Suppl 1:S67-S71
Kratchmarov, Radomir; Viragova, Sara; Kim, Min Jung et al. (2018) Metabolic control of cell fate bifurcations in a hematopoietic progenitor population. Immunol Cell Biol 96:863-871

Showing the most recent 10 out of 331 publications