The generation and use of transgenic and gene-targeted mice has become an essential technology for basic cancer research, as well as for other areas of basic biomedical research. Therefore, this facility serves two critical functions within the Cancer Center. First, the Animal Facility provides convenient, affordable and high quality animal care and maintenance to Cancer Center investigators who use transgenic, mutant and other experimental mice in their research. The support for this Facility provided by the Cancer Center, as well as by the University, results in animal maintenance charges that are relatively affordable, which is a prerequisite for genetic studies using large numbers of transgenic and mutant mice. Second, the Facility operates a transgenic and chimeric mouse production service, which allows all Cancer Center investigators to generate new strains of transgenic mice or perform gene targeting (e.g., gene knockout) studies. The Facility provides technical advice on the design and construction of transgenes and gene-targeting vectors. DNA constructs for transgenesis, and genetically modified ES cell lines are produced by individual Cancer Center investigators, then delivered to the facility, where they are injected into mouse eggs or blastocysts, respectively. The resulting mice are then returned to the individual investigators for further analysis and breeding. The Facility also plans to provide cryopreservation of mouse embryos, and to produce new wild type ES cell lines for use by investigators.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA013696-30S1
Application #
6663956
Study Section
Project Start
2002-07-23
Project End
2003-06-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
30
Fiscal Year
2002
Total Cost
$296,752
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
167204994
City
New York
State
NY
Country
United States
Zip Code
10032
Billing, David; Horiguchi, Michiko; Wu-Baer, Foon et al. (2018) The BRCT Domains of the BRCA1 and BARD1 Tumor Suppressors Differentially Regulate Homology-Directed Repair and Stalled Fork Protection. Mol Cell 72:127-139.e8
Connors, Thomas J; Baird, J Scott; Yopes, Margot C et al. (2018) Developmental Regulation of Effector and Resident Memory T Cell Generation during Pediatric Viral Respiratory Tract Infection. J Immunol 201:432-439
Brescia, Paola; Schneider, Christof; Holmes, Antony B et al. (2018) MEF2B Instructs Germinal Center Development and Acts as an Oncogene in B Cell Lymphomagenesis. Cancer Cell 34:453-465.e9
Wu, Hui-Chen; Do, Catherine; Andrulis, Irene L et al. (2018) Breast cancer family history and allele-specific DNA methylation in the legacy girls study. Epigenetics 13:240-250
Sitko, Austen A; Kuwajima, Takaaki; Mason, Carol A (2018) Eye-specific segregation and differential fasciculation of developing retinal ganglion cell axons in the mouse visual pathway. J Comp Neurol 526:1077-1096
Tzoneva, Gannie; Dieck, Chelsea L; Oshima, Koichi et al. (2018) Clonal evolution mechanisms in NT5C2 mutant-relapsed acute lymphoblastic leukaemia. Nature 553:511-514
Wang, Gang; Biswas, Anup K; Ma, Wanchao et al. (2018) Metastatic cancers promote cachexia through ZIP14 upregulation in skeletal muscle. Nat Med 24:770-781
Chen, Yen-Hua; Kratchmarov, Radomir; Lin, Wen-Hsuan W et al. (2018) Asymmetric PI3K Activity in Lymphocytes Organized by a PI3K-Mediated Polarity Pathway. Cell Rep 22:860-868
Cho, Galaxy Y; Schaefer, Kellie A; Bassuk, Alexander G et al. (2018) CRISPR GENOME SURGERY IN THE RETINA IN LIGHT OF OFF-TARGETING. Retina 38:1443-1455
Zyablitskaya, Mariya; Munteanu, E Laura; Nagasaki, Takayuki et al. (2018) Second Harmonic Generation Signals in Rabbit Sclera As a Tool for Evaluation of Therapeutic Tissue Cross-linking (TXL) for Myopia. J Vis Exp :

Showing the most recent 10 out of 331 publications