A fully Cancer Center-managed facility, the Genomics Technologies Shared Resource consists of the Microarray and Molecular Cytogenetics facilities which provide access to specialized instrumentation and technical expertise in high-throughput genomic technologies and molecular cytogenetics for use in individual and collaborative research programs. Services provided by the facility are: ? Microarray based genome-wide analysis of gene expression, genetic markers, and DNA copy number aberrations ? Microarray based genome-wide analysis of chromatin modifications ? Validation of microarray and other data by high-throughput quantitative PCR ? Molecular cytogenetic analysis by fluorescence in situ hybridization (FISH) and spectral karyotyping (SKY) ? Evaluation and incorporation of emerging genomic technologies and promoting their integration into research programs of HICCC investigators ? Investigator education and advice in adopting genome wide profiling and molecular cytogenetics in their cancer research. The microarray component of the Genomics Technologies Shared Resource thus provides a comprehensive set of integrated genomic analysis tools and services that facilitate the high throughput analysis of genetic and epigenetic alterations in human cancer in basic and translational research programs. These services, which are currently focused on procedures with several different microarray platforms from Affymetrix and Agilent, with ancillary methods including real-time PCR and Phosphorimaging, are closely linked to those provided by the Biomedical Informatics Shared Resource. The molecular cytogenetics facility provides SKY and FISH characterization of human and mouse tumor cells with efficient turnaround times utilizing state-of-the-art technologies. Together these facilities and services provide an integrated platform for basic and translational genomics research in cancer biology at the HICCC. Future plans include evaluating and potentially incorporating an ultra-high-throughput sequencing service into this Resource. During the last period of the CCSG, 53% of the investigators using the facility were Cancer Center members with peer-reviewed funding with those members representing from 50% to 98% of the usage of the available services. The proposed total operating budget of the facility is $392,489, of which we are requesting $ 66,831 from the CCSG.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA013696-39S3
Application #
8637173
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-07-04
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
39
Fiscal Year
2013
Total Cost
$136,392
Indirect Cost
$51,147
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Connors, Thomas J; Baird, J Scott; Yopes, Margot C et al. (2018) Developmental Regulation of Effector and Resident Memory T Cell Generation during Pediatric Viral Respiratory Tract Infection. J Immunol 201:432-439
Billing, David; Horiguchi, Michiko; Wu-Baer, Foon et al. (2018) The BRCT Domains of the BRCA1 and BARD1 Tumor Suppressors Differentially Regulate Homology-Directed Repair and Stalled Fork Protection. Mol Cell 72:127-139.e8
Wu, Hui-Chen; Do, Catherine; Andrulis, Irene L et al. (2018) Breast cancer family history and allele-specific DNA methylation in the legacy girls study. Epigenetics 13:240-250
Brescia, Paola; Schneider, Christof; Holmes, Antony B et al. (2018) MEF2B Instructs Germinal Center Development and Acts as an Oncogene in B Cell Lymphomagenesis. Cancer Cell 34:453-465.e9
Tzoneva, Gannie; Dieck, Chelsea L; Oshima, Koichi et al. (2018) Clonal evolution mechanisms in NT5C2 mutant-relapsed acute lymphoblastic leukaemia. Nature 553:511-514
Sitko, Austen A; Kuwajima, Takaaki; Mason, Carol A (2018) Eye-specific segregation and differential fasciculation of developing retinal ganglion cell axons in the mouse visual pathway. J Comp Neurol 526:1077-1096
Chen, Yen-Hua; Kratchmarov, Radomir; Lin, Wen-Hsuan W et al. (2018) Asymmetric PI3K Activity in Lymphocytes Organized by a PI3K-Mediated Polarity Pathway. Cell Rep 22:860-868
Wang, Gang; Biswas, Anup K; Ma, Wanchao et al. (2018) Metastatic cancers promote cachexia through ZIP14 upregulation in skeletal muscle. Nat Med 24:770-781
Cho, Galaxy Y; Schaefer, Kellie A; Bassuk, Alexander G et al. (2018) CRISPR GENOME SURGERY IN THE RETINA IN LIGHT OF OFF-TARGETING. Retina 38:1443-1455
Zyablitskaya, Mariya; Munteanu, E Laura; Nagasaki, Takayuki et al. (2018) Second Harmonic Generation Signals in Rabbit Sclera As a Tool for Evaluation of Therapeutic Tissue Cross-linking (TXL) for Myopia. J Vis Exp :

Showing the most recent 10 out of 331 publications