The long-term goal of the Lymphoid Development and Malignancy (LDM) Program is to improve outcomes and seek cures for patients with lymphoid malignancies, including acute lymphoblastic leukemia (ALL) and B cell non-Hodgkin lymphoma (B-NHL). The Program is motivated by the notion that new therapeutic modalities of high efficacy and low toxicity can be developed by specifically targeting the altered oncogenic pathways of malignant cells. To achieve this end, the following Specific Goals will be pursued: 1) identify major cellular pathways that regulate the development of lymphoid tissues. Molecular biology, genetic and systems biology approaches will be used to elucidate cellular pathways that regulate the growth, survival and differentiation of immature lymphocytes (the precursors of ALL) and mature B cells (the precursors of BNHL);2) Identify genes and pathways involved in the pathogenesis of lymphoid malignancies. In particular, the genetic lesions and deregulated cellular pathways that are casually associated with the pathogenesis of ALL and B-NHL will be identified;3) Develop novel therapies that target the deregulated cellular pathways of lymphoid malignancies. Known drugs as well as compounds identified through screening approaches will be tested as single agents and in combinations for their ability to target deregulated pathways in lymphoid malignancies using pre-clinical models and Phase l/ll clinical trials. The LDM Program consists of 35 members (22 full) from 4 Columbia University Departments (Medicine, Microbiology, Pathology and Pediatrics). The Program hosts several multi-PI collaborative projects such as the such as the """"""""N0TCH1 in CLL"""""""" ROI (Ferrando &Dalla-Favera Co-PIs) and the """"""""Targeting P13K in T-ALL"""""""" DOD grant (Ferrando &Diacovo (CRN) Co-PIs) reflecting a high level of intra-programmatic and inter-programmatic collaboration. In addition, members of the LDM participate in several multi-investigator projects with other NCI Centers, such as the """"""""Molecular Targets in B Cell Lymphoma"""""""" and the """"""""Emerging targets in lymphoid malignancies"""""""" Leukemia Lymphoma Society Specialized Center of Research (SCOR) grants.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA013696-40
Application #
8753113
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-07-04
Project End
2019-06-30
Budget Start
2014-07-17
Budget End
2015-06-30
Support Year
40
Fiscal Year
2014
Total Cost
$33,319
Indirect Cost
$12,495
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Hernandez, Celine; Huebener, Peter; Pradere, Jean-Philippe et al. (2018) HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest 128:2436-2451
Proto, Jonathan D; Doran, Amanda C; Gusarova, Galina et al. (2018) Regulatory T Cells Promote Macrophage Efferocytosis during Inflammation Resolution. Immunity 49:666-677.e6
Kraakman, Michael J; Liu, Qiongming; Postigo-Fernandez, Jorge et al. (2018) PPAR? deacetylation dissociates thiazolidinedione's metabolic benefits from its adverse effects. J Clin Invest 128:2600-2612
Lee, Younghyun; Pujol Canadell, Monica; Shuryak, Igor et al. (2018) Candidate protein markers for radiation biodosimetry in the hematopoietically humanized mouse model. Sci Rep 8:13557
Cui, Xuan; Jauregui, Ruben; Park, Karen Sophia et al. (2018) Multimodal characterization of a novel mutation causing vitamin B6-responsive gyrate atrophy. Ophthalmic Genet 39:512-516
Evans, Lucy P; Newell, Elizabeth A; Mahajan, MaryAnn et al. (2018) Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice. Ann Clin Transl Neurol 5:240-251
Dieck, Chelsea L; Tzoneva, Gannie; Forouhar, Farhad et al. (2018) Structure and Mechanisms of NT5C2 Mutations Driving Thiopurine Resistance in Relapsed Lymphoblastic Leukemia. Cancer Cell 34:136-147.e6
Nathan, J; Ruscitto, A; Pylawka, S et al. (2018) Fibrocartilage Stem Cells Engraft and Self-Organize into Vascularized Bone. J Dent Res 97:329-337
Kratchmarov, Radomir; Viragova, Sara; Kim, Min Jung et al. (2018) Metabolic control of cell fate bifurcations in a hematopoietic progenitor population. Immunol Cell Biol 96:863-871
Sengillo, Jesse D; Lee, Winston; Bakhoum, Mathieu F et al. (2018) CHOROIDEREMIA ASSOCIATED WITH A NOVEL SYNONYMOUS MUTATION IN GENE ENCODING REP-1. Retin Cases Brief Rep 12 Suppl 1:S67-S71

Showing the most recent 10 out of 331 publications