Our recently expanded Proteomics Shared Resource offers cancer researchers at the HICCC direct access to the cutting-edge proteomics technology to conduct discovery-based proteomics and targeted proteomics. During the last decade, the field of proteomics has evolved rapidly to overcome technical limitations to improve the dynamic range and reproducibility of large-scale analyses. In particular, advances in mass spectrometry (MS) instrumentation and bioinformatics for """"""""bottom-up"""""""" or """"""""shotgun"""""""" proteomic approaches have been at the core of new developments to meet the challenge of biological complexity. These methods are striving to provide a more comprehensive view of the multi-factorial processes occurring during normal development or disease progression. At the protein level, distinct changes occur during the transformation of a healthy cell into a neoplastic cell, including altered expression, differential protein modification, changes in specific activity, and aberrant subcellular localization, all ofwhich can affect cellular function. Included in this SR at CUM(J are start-to-finish protein identification and characterization services, including current quantification methods such as SILAC, which require sensitive and expensive MS-centered equipment with on-site expertise in experimental design, and state of the art informatics.
In contrast to the genome, the proteome is rapidly dynamic, depending on the status and progression of a disease. The inherent advantage studying proteomics opposed to the genome is that the identified proteins are themselves the biological endpoint. Identifying changes of protein abundance and modifications is the underlying theme in cancer proteomics. The Proteomics Share Resource provides investigators access to state ofthe art proteomics technology and offer consultation on experimental design.
Showing the most recent 10 out of 331 publications