Flow cytometry is a critical tool for cancer research. It is used to identify, track and purify specific cell populations, assess cell cycle progression and apoptosis responses, and to support a broad range of engineering approaches such as the quantification of delivery systems and the development of novel protein labeling and imaging technologies. The Koch Institute Flow Cytometry Core is a Shared Resource that provides Center Members training in, and access to, state-of-the-art instrumentation, data analysis and technical expertise in cell sorting and analyses. In the current period, the capabilities of this Core were further expanded and enhanced. This includes moving into a larger, custom-designed space in the new Koch Institute building, an increase in the Core staff and the acquisition of new instrumentation. Notably, in the same period, there has been a substantial increase in the number of Center Members who use the Flow Cytomtery Core from 78% to 94%, including investigators from all four Programs. Thus, this Shared Resource is essential to the success of the Koch Institute mission. In the upcoming period, the Flow Cytometry Core will continue to offer a wide range of state-of-the-art services to support the research programs of Center Members. Additionally, the Core plans to make new instrument purchases, with the support of MIT funds, and establish cutting edge single cell technologies, with the support of requested developmental funds. In spite of the major expansion in services and the resulting increased costs of running this Core, the requested CCSG budget for Year 44 is slightly reduced from the requested and recommended budget in Year 39.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014051-47
Application #
9487932
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-05-01
Budget End
2019-04-30
Support Year
47
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
Rothenberg, Daniel A; Taliaferro, J Matthew; Huber, Sabrina M et al. (2018) A Proteomics Approach to Profiling the Temporal Translational Response to Stress and Growth. iScience 9:367-381
Kimmerling, Robert J; Prakadan, Sanjay M; Gupta, Alejandro J et al. (2018) Linking single-cell measurements of mass, growth rate, and gene expression. Genome Biol 19:207
Tang, Li; Zheng, Yiran; Melo, Mariane Bandeira et al. (2018) Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol 36:707-716
Holec, Patrick V; Berleant, Joseph; Bathe, Mark et al. (2018) A Bayesian framework for high-throughput T cell receptor pairing. Bioinformatics :
Wong, Madeline Y; Doan, Ngoc Duc; DiChiara, Andrew S et al. (2018) A High-Throughput Assay for Collagen Secretion Suggests an Unanticipated Role for Hsp90 in Collagen Production. Biochemistry 57:2814-2827
Danai, Laura V; Babic, Ana; Rosenthal, Michael H et al. (2018) Altered exocrine function can drive adipose wasting in early pancreatic cancer. Nature 558:600-604
Dubbury, Sara J; Boutz, Paul L; Sharp, Phillip A (2018) CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Nature 564:141-145
Tokatlian, Talar; Kulp, Daniel W; Mutafyan, Andrew A et al. (2018) Enhancing Humoral Responses Against HIV Envelope Trimers via Nanoparticle Delivery with Stabilized Synthetic Liposomes. Sci Rep 8:16527
Crowell, Laura E; Lu, Amos E; Love, Kerry R et al. (2018) On-demand manufacturing of clinical-quality biopharmaceuticals. Nat Biotechnol :
Lo, Justin H; Hao, Liangliang; Muzumdar, Mandar D et al. (2018) iRGD-guided Tumor-penetrating Nanocomplexes for Therapeutic siRNA Delivery to Pancreatic Cancer. Mol Cancer Ther 17:2377-2388

Showing the most recent 10 out of 904 publications