Koch Institute Members use vertebrate model organisms as a key tool to study the role of known or putative cancer genes in development and tumorigenicity; investigate the mechanisms of tumor initiation, progression and metastasis; evaluate the role of stroma and immune responses in tumorigenesis; and assess the efficacy of drugs, nanomaterials and devices in therapeutic and diagnostic applications. Thus, it is essential that Center Members are able to correctly diagnose developmental and tumor phenotypes, evaluate the underlying molecular events, and accurately and quantitatively assess drug or vaccine delivery, localized tissue response, and overall therapeutic response. The Koch Institute Histology Core is a Shared Resource that provides state- of-the-art histological services to support these studies. This includes assistance and/or training in tissue sectioning, slide preparation, staining and analysis, and access to the consultative services of an internationally recognized Veterinary Pathologist, Dr. Roderick Bronson, for diagnosis of tumor and tissue phenotypes. During the current period, usage of the Histology Core increased from 67% to 77% of Center Members, and included investigators from all three Programs. In response to Center member needs, the Histology Core expanded services and instrumentation. This includes expanded offerings for immunohistochemistry and special stains, and investigator training for independent sectioning. The Core also acquired new digital slide scanning capabilities and quantification software, and made upgrades to existing key instrumentation. Thus, this Shared Resource is essential to the success of the Koch Institute mission. In the upcoming period, The Histology Core is committed to offering a wide range of state-of-the-art histological services to support the research programs of Center Members. Planned initiatives include: working with the Integrated Genomics & Bioinformatics Core to establish methodologies for mapping gene expression at the single cell level within tissues; developing expertise and providing guidance in use of automated AI-driven analysis packages (such as QuPath) for analysis of histological sections; evaluating instrumentation to determine community benefit for fluorescent digital slide scanning; and expanding histology training offerings to include more hands-on workshop opportunities. This shared Core is of exceptional value to the CCSG because Koch Institute Members account for 95% of the Core services usage. Notably, the requested CCSG budget for Year 49 is 6.8% less than the budget in the current period (Year 48).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA014051-49
Application #
9937093
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
49
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Guen, Vincent J; Edvardson, Simon; Fraenkel, Nitay D et al. (2018) A homozygous deleterious CDK10 mutation in a patient with agenesis of corpus callosum, retinopathy, and deafness. Am J Med Genet A 176:92-98
Murphy, Patrick A; Butty, Vincent L; Boutz, Paul L et al. (2018) Alternative RNA splicing in the endothelium mediated in part by Rbfox2 regulates the arterial response to low flow. Elife 7:
Khan, Omar F; Kowalski, Piotr S; Doloff, Joshua C et al. (2018) Endothelial siRNA delivery in nonhuman primates using ionizable low-molecular weight polymeric nanoparticles. Sci Adv 4:eaar8409
Woolston, Benjamin M; Roth, Timothy; Kohale, Ishwar et al. (2018) Development of a formaldehyde biosensor with application to synthetic methylotrophy. Biotechnol Bioeng 115:206-215
Huang, Hsin-Ho; Qian, Yili; Del Vecchio, Domitilla (2018) A quasi-integral controller for adaptation of genetic modules to variable ribosome demand. Nat Commun 9:5415
GuimarĂ£es, Pedro P G; Gaglione, Stephanie; Sewastianik, Tomasz et al. (2018) Nanoparticles for Immune Cytokine TRAIL-Based Cancer Therapy. ACS Nano 12:912-931
Moynihan, Kelly D; Holden, Rebecca L; Mehta, Naveen K et al. (2018) Enhancement of Peptide Vaccine Immunogenicity by Increasing Lymphatic Drainage and Boosting Serum Stability. Cancer Immunol Res 6:1025-1038
Nath, Samir R; Yu, Zhigang; Gipson, Theresa A et al. (2018) Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. J Clin Invest 128:3630-3641
Kimmerling, Robert J; Prakadan, Sanjay M; Gupta, Alejandro J et al. (2018) Linking single-cell measurements of mass, growth rate, and gene expression. Genome Biol 19:207
Rothenberg, Daniel A; Taliaferro, J Matthew; Huber, Sabrina M et al. (2018) A Proteomics Approach to Profiling the Temporal Translational Response to Stress and Growth. iScience 9:367-381

Showing the most recent 10 out of 904 publications