Advanced Biophotonics Core Shared Resource - Project Summary/Abstract The Advanced Biophotonics Core (ABC) provides imaging and analysis instrumentation coupled with technical and collaborative support staff for advanced light and electron microscopy of biological systems. Cancer Center members use the facility for high-throughput imaging assays, high-resolution imaging of live cell and tissue dynamics, super-resolution microscopy, large 3D volume imaging of tissues, electron microscopy analysis of subcellular morphology and protein distribution, and automated computational image processing, visualization, and analysis. The ABC Core is also actively pursuing and developing new cutting-edge imaging and analysis methodologies to better serve the needs of Cancer Center researchers, such as cryo-correlative light and electron microscopy, light-sheet imaging of cleared and expanded tissues, and machine-learning based processing, segmentation, and analysis of light and electron microscope images. The ABC Core is committed to providing Cancer Center members: 1) access to light and electron microscopes, specialized sample preparation reagents and technologies, and computational hardware and software for analysis and visualization, 2) free one-on-one training on all microscopes, as well as image processing and analysis software, 3) consulting and collaborative support for experimental design and implementation of imaging and analysis experiments, 4) sample preparation for electron microscopy, tissue clearing, and expansion microscopy, 5) workshops and demos with advanced microscope and software technologies, 6) weekly open- door imaging boot camp on advanced imaging and image processing techniques, and 7) a monthly Biophotonics scientific seminar series followed by town-hall style discussions with ABC Core staff and users.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Salk Institute for Biological Studies
La Jolla
United States
Zip Code
Hartmann, Phillipp; Hochrath, Katrin; Horvath, Angela et al. (2018) Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 67:2150-2166
Glustrom, Leslie W; Lyon, Kenneth R; Paschini, Margherita et al. (2018) Single-stranded telomere-binding protein employs a dual rheostat for binding affinity and specificity that drives function. Proc Natl Acad Sci U S A 115:10315-10320
Giraddi, Rajshekhar R; Chung, Chi-Yeh; Heinz, Richard E et al. (2018) Single-Cell Transcriptomes Distinguish Stem Cell State Changes and Lineage Specification Programs in Early Mammary Gland Development. Cell Rep 24:1653-1666.e7
Ma, Jiao; Saghatelian, Alan; Shokhirev, Maxim Nikolaievich (2018) The influence of transcript assembly on the proteogenomics discovery of microproteins. PLoS One 13:e0194518
Patriarchi, Tommaso; Cho, Jounhong Ryan; Merten, Katharina et al. (2018) Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360:
Kolar, Matthew J; Nelson, Andrew T; Chang, Tina et al. (2018) Faster Protocol for Endogenous Fatty Acid Esters of Hydroxy Fatty Acid (FAHFA) Measurements. Anal Chem 90:5358-5365
Ogawa, Junko; Pao, Gerald M; Shokhirev, Maxim N et al. (2018) Glioblastoma Model Using Human Cerebral Organoids. Cell Rep 23:1220-1229
Ahmadian, Maryam; Liu, Sihao; Reilly, Shannon M et al. (2018) ERR? Preserves Brown Fat Innate Thermogenic Activity. Cell Rep 22:2849-2859
Benegiamo, Giorgia; Mure, Ludovic S; Erikson, Galina et al. (2018) The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding. Cell Metab 27:404-418.e7
Sulli, Gabriele; Rommel, Amy; Wang, Xiaojie et al. (2018) Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature 553:351-355

Showing the most recent 10 out of 457 publications