The goal of the Program in Structural and Chemical Biology Is to provide a molecular description and interpretation of biological processes associated with oncogenesis and tumor progression. Together, the tools of structural and chemical biology permit investigation of fundamental aspects of cancer biology, the design of small molecule probes for biological discovery, the design and synthesis of small molecule therapeutics, and development of novel molecular and cellular technologies. Program members include those with expertise in organic synthesis, chemical biology. X-ray crystallography and NMR analyses, enzymology, and modeling at the molecular level. Program members provide valuable consultation and technology to other Cancer Institute investigators who have identified molecules involved in cellular transformation, and this serves to stimulate the exchange of technology and expertise between members of the Program as well as with other members of the Cancer Institute. Program members have provided the leadership for a number of Initiatives that have markedly enhanced the technological capabilities available to the cancer community at Duke, Including the upgrade and expansion of our X-ray crystallography and NMR facility, establishment of a state-of-the-art proteomics facility, and the establishment of core facilities that provide small molecule synthetic capabilities and enable high-throughput screening of small molecule libraries. The Program includes 21 members from 6 basic and clinical departments within Duke University.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014236-40
Application #
8601805
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
40
Fiscal Year
2014
Total Cost
$29,933
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Káradóttir, Ragnhildur T; Kuo, Chay T (2018) Neuronal Activity-Dependent Control of Postnatal Neurogenesis and Gliogenesis. Annu Rev Neurosci 41:139-161
Han, Peng; Liu, Hongliang; Shi, Qiong et al. (2018) Associations between expression levels of nucleotide excision repair proteins in lymphoblastoid cells and risk of squamous cell carcinoma of the head and neck. Mol Carcinog 57:784-793
Xu, Yinghui; Wang, Yanru; Liu, Hongliang et al. (2018) Genetic variants in the metzincin metallopeptidase family genes predict melanoma survival. Mol Carcinog 57:22-31
Abdi, Khadar; Kuo, Chay T (2018) Laminating the mammalian cortex during development: cell polarity protein function and Hippo signaling. Genes Dev 32:740-741
Lu, Min; Sanderson, Sydney M; Zessin, Amelia et al. (2018) Exercise inhibits tumor growth and central carbon metabolism in patient-derived xenograft models of colorectal cancer. Cancer Metab 6:14
Qian, Danwen; Liu, Hongliang; Wang, Xiaomeng et al. (2018) Potentially functional genetic variants in the complement-related immunity gene-set are associated with non-small cell lung cancer survival. Int J Cancer :
Ashcraft, Kathleen A; Choudhury, Kingshuk Roy; Birer, Sam R et al. (2018) Application of a Novel Murine Ear Vein Model to Evaluate the Effects of a Vascular Radioprotectant on Radiation-Induced Vascular Permeability and Leukocyte Adhesion. Radiat Res 190:12-21
Ong, Cecilia T; Campbell, Brittany M; Thomas, Samantha M et al. (2018) Metaplastic Breast Cancer Treatment and Outcomes in 2500 Patients: A Retrospective Analysis of a National Oncology Database. Ann Surg Oncol 25:2249-2260
Duan, Bensong; Hu, Jiangfeng; Liu, Hongliang et al. (2018) Genetic variants in the platelet-derived growth factor subunit B gene associated with pancreatic cancer risk. Int J Cancer 142:1322-1331
Wu, Mengxi; Huang, Po-Hsun; Zhang, Rui et al. (2018) Circulating Tumor Cell Phenotyping via High-Throughput Acoustic Separation. Small 14:e1801131

Showing the most recent 10 out of 513 publications