The School of Medicine, the Duke Comprehensive Cancer Institute, and the Institute for Genome Science & Policy have collaborated to create a Proteomics Core Facility to provide protein characterization resources for Duke Comprehensive Cancer Institute members and the entire Duke Research Gommunity. The Proteomics Core Facility ( is located in a ~1,900 sq. ft. laboratory in the Levine Science Research Center, and provides capabilities for mass spectrometry based proteomics for protein identification and protein quantitation, including biomarker discovery and biomarker verification experiments.'For qualitative identificafions and biomarker discovery experiments ('omic-scale qualitative and quantitative analyses), the laboratory is equipped with four high resolution accurate mass LC/MS/MS systems, each using a dedicated ultra-high performance nanoscale liquid chromatography systems (Waters NanoAcquity). Three ofthe MS/MS systems are hybrid quadruple time-of-fiight tandem mass spectrometers (Waters Q-Tof Ultima, Q-Tof Premier, and Synapt High Definition Mass Spectrometer). The fourth system is a hybrid linear ion trap - orbitrap system (Thermo's LTQ-Orbitrap). These systems can be used for label-free, gel-free'differential expression experiments, and also for isotope coding proteomics (such as SILAC or ITRAQ). For biomarker verification experiments, targeted mass spec quantitative experiments are performed on an ultra-high performance nanoscale LC system coupled to a triple quadrupole tandem mass spectrometer (Waters Quattro Premier). For these experiments, data acquisition is accomplished using LC/MS/MS with Mulfiple Reacfion Monitoring, a technology whiqh is the 'Gold Standard'for clinical pharmacokinetics studies. In addition, the Synapt High Definition: Mass Spectrometer (Q-Tof with an ion-mobility mass analyzer) provides for unique experiments characterizing piepfides and proteins not only on the basis of mass and charge, but also molecular shape/size, using a unique ionmobility cell located between the quadrupole and fime-of-fiight mass analyzers.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
United States
Zip Code
Abdi, Khadar; Lai, Chun-Hsiang; Paez-Gonzalez, Patricia et al. (2018) Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus. Nat Commun 9:1655
Hudson, Kathryn E; Rizzieri, David; Thomas, Samantha M et al. (2018) Dose-intense chemoimmunotherapy plus radioimmunotherapy in high-risk diffuse large B-cell lymphoma and mantle cell lymphoma: a phase II study. Br J Haematol :
Fayanju, Oluwadamilola M; Park, Ko Un; Lucci, Anthony (2018) Molecular Genomic Testing for Breast Cancer: Utility for Surgeons. Ann Surg Oncol 25:512-519
Porter, Laura S; Fish, Laura; Steinhauser, Karen (2018) Themes Addressed by Couples With Advanced Cancer During a Communication Skills Training Intervention. J Pain Symptom Manage 56:252-258
Káradóttir, Ragnhildur T; Kuo, Chay T (2018) Neuronal Activity-Dependent Control of Postnatal Neurogenesis and Gliogenesis. Annu Rev Neurosci 41:139-161
Han, Peng; Liu, Hongliang; Shi, Qiong et al. (2018) Associations between expression levels of nucleotide excision repair proteins in lymphoblastoid cells and risk of squamous cell carcinoma of the head and neck. Mol Carcinog 57:784-793
Xu, Yinghui; Wang, Yanru; Liu, Hongliang et al. (2018) Genetic variants in the metzincin metallopeptidase family genes predict melanoma survival. Mol Carcinog 57:22-31
Abdi, Khadar; Kuo, Chay T (2018) Laminating the mammalian cortex during development: cell polarity protein function and Hippo signaling. Genes Dev 32:740-741
Lu, Min; Sanderson, Sydney M; Zessin, Amelia et al. (2018) Exercise inhibits tumor growth and central carbon metabolism in patient-derived xenograft models of colorectal cancer. Cancer Metab 6:14
Qian, Danwen; Liu, Hongliang; Wang, Xiaomeng et al. (2018) Potentially functional genetic variants in the complement-related immunity gene-set are associated with non-small cell lung cancer survival. Int J Cancer :

Showing the most recent 10 out of 513 publications