? INTEGRATED CANCER GENOMICS SHARED RESOURCE The Integrated Cancer Genomics shared resource (ICG) is committed to providing state-of-the-art instrumentation and protocol support to Duke Cancer Institute (DCI) researchers as these technologies evolve over time. The ICG expanded to meet DCI needs that encompass microbiome, epigenetic and increase single cell services provided by three institutionally designated core facilities: Sequencing and Genomic Technologies Core (SGT), the recently established Microbiome Shared Resource (MSR), and the Molecular Genomics Core (MGC). By unifying these existing resources for DCI members, the ICG meets its objective to provide one-stop access to all of the major research protocols and instrumentation platforms used in contemporary cancer genomics research, including genomics, transcriptomics, microbial studies, and epigenetics. For over a decade, the ICG has maintained a record of providing updated, state-of-the-art genomic and transcriptomic services to DCI members. The ICG includes services that are performed by three Duke School of Medicine (SOM) core facilities. The Sequencing and Genomic Technologies (SGT) and Microbiome Shared Resource (MSR) perform services within the Duke Center for Genomics and Computational Biology; the Molecular Genomics Core (MGC) performs services within the Duke Molecular Physiology Institute. The ICG unifies all of the cancer genomic technologies on campus, providing one-stop access to all of the major research protocols and instrumentation platforms used in contemporary cancer genomics research. The ICG supports a wide range of projects from DCI investigators, by providing expert consultation, project management and training to facilitate access to approaches including SNP discovery, mapping chromatin modifications, single-cell sequencing, measuring mRNA levels at several scales (single genes, cancer panels, entire transcriptome), sequencing exomes, identifying DNA methylation, microbiome profiling, and mapping transcription factor binding sites. By offering the full range of technological platforms, the ICG allows investigators to choose the optimal solution for their cancer related projects and assists investigators with data quality control, versioning, statistical analysis, and dissemination for all of these services. In addition, the ICG works with DCI investigators to explore and establish new technologies which catalyzes the advancement of cancer research. In 2018, the ICG shared resource provided services to 290 investigators, 29% of whom were DCI members, accounting for 25% of total usage, from all 8 DCI Research Programs. Use of this shared resource by DCI Members contributed to 216 publications over the project period, 80 of which were in high impact journals. The shared resource operates primarily on a cost-recovery basis, with institutional support for a portion of the operating costs and instrument purchases. Support from the Cancer Center Support Grant allows ICG to provide DCI members with consultations, assistance with grant and manuscript preparation, and scheduling priority. User fees for other activities follow School of Medicine guidelines.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014236-47
Application #
10118130
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-01-01
Project End
2024-12-31
Budget Start
2021-01-01
Budget End
2021-12-31
Support Year
47
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Káradóttir, Ragnhildur T; Kuo, Chay T (2018) Neuronal Activity-Dependent Control of Postnatal Neurogenesis and Gliogenesis. Annu Rev Neurosci 41:139-161
Han, Peng; Liu, Hongliang; Shi, Qiong et al. (2018) Associations between expression levels of nucleotide excision repair proteins in lymphoblastoid cells and risk of squamous cell carcinoma of the head and neck. Mol Carcinog 57:784-793
Xu, Yinghui; Wang, Yanru; Liu, Hongliang et al. (2018) Genetic variants in the metzincin metallopeptidase family genes predict melanoma survival. Mol Carcinog 57:22-31
Abdi, Khadar; Kuo, Chay T (2018) Laminating the mammalian cortex during development: cell polarity protein function and Hippo signaling. Genes Dev 32:740-741
Lu, Min; Sanderson, Sydney M; Zessin, Amelia et al. (2018) Exercise inhibits tumor growth and central carbon metabolism in patient-derived xenograft models of colorectal cancer. Cancer Metab 6:14
Qian, Danwen; Liu, Hongliang; Wang, Xiaomeng et al. (2018) Potentially functional genetic variants in the complement-related immunity gene-set are associated with non-small cell lung cancer survival. Int J Cancer :
Ashcraft, Kathleen A; Choudhury, Kingshuk Roy; Birer, Sam R et al. (2018) Application of a Novel Murine Ear Vein Model to Evaluate the Effects of a Vascular Radioprotectant on Radiation-Induced Vascular Permeability and Leukocyte Adhesion. Radiat Res 190:12-21
Ong, Cecilia T; Campbell, Brittany M; Thomas, Samantha M et al. (2018) Metaplastic Breast Cancer Treatment and Outcomes in 2500 Patients: A Retrospective Analysis of a National Oncology Database. Ann Surg Oncol 25:2249-2260
Duan, Bensong; Hu, Jiangfeng; Liu, Hongliang et al. (2018) Genetic variants in the platelet-derived growth factor subunit B gene associated with pancreatic cancer risk. Int J Cancer 142:1322-1331
Wu, Mengxi; Huang, Po-Hsun; Zhang, Rui et al. (2018) Circulating Tumor Cell Phenotyping via High-Throughput Acoustic Separation. Small 14:e1801131

Showing the most recent 10 out of 513 publications