A structured approach for assessing the current status, identifying opportunities, and formulating strategies for implementing the mission of UWCCC ensures effective and well-coordinated use of Core Grant resources, institutional discretionary support and philanthropic funds. Through UWCCC program evaluation and planning efforts, a number of reviews, evaluations and retreats during the current grant period have resulted in strategic initiatives for UWCCC Scientific Programs and Shared Resources, organization and infrastructure support for Administration, focused enhancements to the Cancer Service Line, regional clinical plans and activities and Community Advisory Board priorities. These have occurred through regular strategic planning meetings of individual focus groups/committees of the Cancer Service Line;the UWCCC Community Advisory Board;the UWCCC Executive Committee, Leadership Group and EAB;and the annual UWCCC scientific retreat, as well as ad hoc review groups evaluating focused areas such as administrative organization, cancer control, research imaging, genetics and informatics. Engaging critical review by peers is an important component of evaluation and forms the basis for planning that will focus future directions. The Director, with the advice of the Executive Committee, manages all planning and development money centrally in order to maintain the ability to account for its expenditure and evaluate its impact.

Public Health Relevance

The UW Carbone Cancer Center has a well-established planning and evaluation process which includes an External Advisory Board, yearly retreats, and regular Scientific Program meetings to assure that the UWCCC is addressing the mission of the National Cancer Institute.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014520-40
Application #
8762780
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
40
Fiscal Year
2014
Total Cost
$105,903
Indirect Cost
$59,442
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Wu, Yirong; Fan, Jun; Peissig, Peggy et al. (2018) Quantifying predictive capability of electronic health records for the most harmful breast cancer. Proc SPIE Int Soc Opt Eng 10577:
Fu, Anqi; Oberholtzer, Sydney M; Bagheri-Fam, Stefan et al. (2018) Dynamic expression patterns of Irx3 and Irx5 during germline nest breakdown and primordial follicle formation promote follicle survival in mouse ovaries. PLoS Genet 14:e1007488
Ni, Dalong; Jiang, Dawei; Kutyreff, Christopher J et al. (2018) Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat Commun 9:5421
Huynh, Mailee; Pak, Chorom; Markovina, Stephanie et al. (2018) Hyaluronan and proteoglycan link protein 1 (HAPLN1) activates bortezomib-resistant NF-?B activity and increases drug resistance in multiple myeloma. J Biol Chem 293:2452-2465
Farrell, Emily; Armstrong, Annie E; Grimes, Adrian C et al. (2018) Transcriptome Analysis of Cardiac Hypertrophic Growth in MYBPC3-Null Mice Suggests Early Responders in Hypertrophic Remodeling. Front Physiol 9:1442
Net, Jose M; Whitman, Gary J; Morris, Elizabteh et al. (2018) Relationships Between Human-Extracted MRI Tumor Phenotypes of Breast Cancer and Clinical Prognostic Indicators Including Receptor Status and Molecular Subtype. Curr Probl Diagn Radiol :
Jiang, Dawei; Ge, Zhilei; Im, Hyung-Jun et al. (2018) DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat Biomed Eng 2:865-877
Seok, Seung-Hyeon; Ma, Zhi-Xiong; Feltenberger, John B et al. (2018) Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR). J Biol Chem 293:1994-2005
Chapelin, Fanny; Capitini, Christian M; Ahrens, Eric T (2018) Fluorine-19 MRI for detection and quantification of immune cell therapy for cancer. J Immunother Cancer 6:105
Ni, Dalong; Ferreira, Carolina A; Barnhart, Todd E et al. (2018) Magnetic Targeting of Nanotheranostics Enhances Cerenkov Radiation-Induced Photodynamic Therapy. J Am Chem Soc 140:14971-14979

Showing the most recent 10 out of 1528 publications