UWCCC Tumor Microenvironment (TM) Program Summary Co-Leaders: Patricia Keely and David Beebe PROJECT SUMMARY/ABSTRACT Tumors are complex systems composed of tumor cells, stromal cells, soluble factors, and the extracellular matrix (ECM); together, these components constitute the tumor microenvironment. While cancer research has focused historically on studying and treating the tumor cell, it is now clear that the other components of the tumor microenvironment are active participants in tumor progression. For example, growth factors secreted by tumor cells attract immune cells into the tumor microenvironment; these immune cells in turn provide cytokines and other factors that stimulate stromal cell deposition and remodeling of ECM, which feedback to influence tumor cell behavior. Although the tumor microenvironment is undoubtedly important in the progression of several types of cancer, therapeutic approaches targeted against the microenvironment remain rare, in part, because knowledge in this area is insufficient. Therefore, it is the mission of the Tumor Microenvironment (TM) Program to identify microenvironmental changes that occur during tumorigenesis and analyze how the interactions between the tumor cell and microenvironmental components affect tumor formation, growth, progression, and ultimately metastasis. To accomplish these goals, the TM program fosters collaborations between its 32 members from 17 departments - basic scientists, clinicians, and bioengineers who specialize in the development of systems that mimic the in vivo environment and computational modeling of systems-level behaviors. TM program research is organized into three thematic areas: 1) Extracellular Matrix, 2) Engineering Approaches, and 3) Immune Interactions. Program members were supported by $3.0 million direct costs in NCI-funding and $10.6 million direct costs in total peer-reviewed cancer-related support, and were highly productive with 494 publications during the course of the last grant. Of these publications, 13% were intra- programmatic collaborations and 24% were inter-programmatic collaborations. In the year 2016 alone, nearly 50% of publications were collaborative with other institutions. Through these research efforts, members of the TM program are identifying new biomarkers and therapeutic approaches.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014520-45
Application #
9706772
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-04-01
Budget End
2020-03-31
Support Year
45
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Yu, Bo; Wei, Hao; He, Qianjun et al. (2018) Efficient Uptake of 177 Lu-Porphyrin-PEG Nanocomplexes by Tumor Mitochondria for Multimodal-Imaging-Guided Combination Therapy. Angew Chem Int Ed Engl 57:218-222
Ehlerding, Emily B; Lacognata, Saige; Jiang, Dawei et al. (2018) Targeting angiogenesis for radioimmunotherapy with a 177Lu-labeled antibody. Eur J Nucl Med Mol Imaging 45:123-131
Shea, Michael P; O'Leary, Kathleen A; Wegner, Kyle A et al. (2018) High collagen density augments mTOR-dependent cancer stem cells in ER?+ mammary carcinomas, and increases mTOR-independent lung metastases. Cancer Lett 433:1-9
Goel, Shreya; Ferreira, Carolina A; Chen, Feng et al. (2018) Activatable Hybrid Nanotheranostics for Tetramodal Imaging and Synergistic Photothermal/Photodynamic Therapy. Adv Mater 30:
Wei, Weijun; Ehlerding, Emily B; Lan, Xiaoli et al. (2018) PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 45:132-150
McDermott, Andrew J; Tumey, Tyler A; Huang, Mingwei et al. (2018) Inhaled Cryptococcus neoformans elicits allergic airway inflammation independent of Nuclear Factor Kappa B signalling in lung epithelial cells. Immunology 153:513-522
You, Xiaona; Kong, Guangyao; Ranheim, Erik A et al. (2018) Unique dependence on Sos1 in Kras G12D -induced leukemogenesis. Blood 132:2575-2579
Ferreira, Carolina A; Hernandez, Reinier; Yang, Yunan et al. (2018) ImmunoPET of CD146 in a Murine Hindlimb Ischemia Model. Mol Pharm 15:3434-3441
Conklin, Matthew W; Gangnon, Ronald E; Sprague, Brian L et al. (2018) Collagen Alignment as a Predictor of Recurrence after Ductal Carcinoma In Situ. Cancer Epidemiol Biomarkers Prev 27:138-145
Ko, Huaising C; Kimple, Randall J (2018) The Resident Individual Development Plan as a Guide for Radiation Oncology Mentorship. Int J Radiat Oncol Biol Phys 101:786-788

Showing the most recent 10 out of 1528 publications