UWCCC Tumor Microenvironment (TM) Program Summary Co-Leaders: Patricia Keely and David Beebe PROJECT SUMMARY/ABSTRACT Tumors are complex systems composed of tumor cells, stromal cells, soluble factors, and the extracellular matrix (ECM); together, these components constitute the tumor microenvironment. While cancer research has focused historically on studying and treating the tumor cell, it is now clear that the other components of the tumor microenvironment are active participants in tumor progression. For example, growth factors secreted by tumor cells attract immune cells into the tumor microenvironment; these immune cells in turn provide cytokines and other factors that stimulate stromal cell deposition and remodeling of ECM, which feedback to influence tumor cell behavior. Although the tumor microenvironment is undoubtedly important in the progression of several types of cancer, therapeutic approaches targeted against the microenvironment remain rare, in part, because knowledge in this area is insufficient. Therefore, it is the mission of the Tumor Microenvironment (TM) Program to identify microenvironmental changes that occur during tumorigenesis and analyze how the interactions between the tumor cell and microenvironmental components affect tumor formation, growth, progression, and ultimately metastasis. To accomplish these goals, the TM program fosters collaborations between its 32 members from 17 departments - basic scientists, clinicians, and bioengineers who specialize in the development of systems that mimic the in vivo environment and computational modeling of systems-level behaviors. TM program research is organized into three thematic areas: 1) Extracellular Matrix, 2) Engineering Approaches, and 3) Immune Interactions. Program members were supported by $3.0 million direct costs in NCI-funding and $10.6 million direct costs in total peer-reviewed cancer-related support, and were highly productive with 494 publications during the course of the last grant. Of these publications, 13% were intra- programmatic collaborations and 24% were inter-programmatic collaborations. In the year 2016 alone, nearly 50% of publications were collaborative with other institutions. Through these research efforts, members of the TM program are identifying new biomarkers and therapeutic approaches.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014520-46
Application #
9923039
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
46
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Xu, Cheng; Chen, Feng; Valdovinos, Hector F et al. (2018) Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials 165:56-65
Wargowski, Ellen; Johnson, Laura E; Eickhoff, Jens C et al. (2018) Prime-boost vaccination targeting prostatic acid phosphatase (PAP) in patients with metastatic castration-resistant prostate cancer (mCRPC) using Sipuleucel-T and a DNA vaccine. J Immunother Cancer 6:21
Bednarz, Bryan; Grudzinski, Joseph; Marsh, Ian et al. (2018) Murine-specific Internal Dosimetry for Preclinical Investigations of Imaging and Therapeutic Agents. Health Phys 114:450-459
Romero-Masters, James C; Ohashi, Makoto; Djavadian, Reza et al. (2018) An EBNA3C-deleted Epstein-Barr virus (EBV) mutant causes B-cell lymphomas with delayed onset in a cord blood-humanized mouse model. PLoS Pathog 14:e1007221
van den Broek, Jeroen J; van Ravesteyn, Nicolien T; Mandelblatt, Jeanne S et al. (2018) Comparing CISNET Breast Cancer Incidence and Mortality Predictions to Observed Clinical Trial Results of Mammography Screening from Ages 40 to 49. Med Decis Making 38:140S-150S
Lu, Zhanping; Hong, Courtney C; Kong, Guangyao et al. (2018) Polycomb Group Protein YY1 Is an Essential Regulator of Hematopoietic Stem Cell Quiescence. Cell Rep 22:1545-1559
Shea, Michael P; O'Leary, Kathleen A; Fakhraldeen, Saja A et al. (2018) Antiestrogen Therapy Increases Plasticity and Cancer Stemness of Prolactin-Induced ER?+ Mammary Carcinomas. Cancer Res 78:1672-1684
Schrager, Sarina; Burnside, Elizabeth (2018) Breast Cancer Screening in Primary Care: A Call for Development and Validation of Patient-Oriented Shared Decision-Making Tools. J Womens Health (Larchmt) :
Ehlerding, Emily B; Grodzinski, Piotr; Cai, Weibo et al. (2018) Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano 12:2106-2121
Liu, Bai; Jones, Monica; Kong, Lin et al. (2018) Evaluation of the biological activities of the IL-15 superagonist complex, ALT-803, following intravenous versus subcutaneous administration in murine models. Cytokine 107:105-112

Showing the most recent 10 out of 1528 publications