The Transgenic and Embryonic Stem Cell Facility is a shared facility designed to generate transgenic and knockout mice for researchers at the University of Chicago. Most of these experiments are being conducted by members of the University of Chicago Cancer Center, and many of these experiments have direct implications not only for our understanding of cancer, but also for generating animal model systems that will be important for developing new and improved diagnostic and therapeutic tools for cancer. Five services are currently provided by the Facility: (1) preparation of transgenic mice, through the F1 generation; (2) transfer of embryonic stem cells to mouse blastocysts, and subsequent generation of chimeric, heterozygous and homozygous mice targeted for a particular null mutation, (3) embryo freezing; (4) timed mouse pregnancies, and (5) clean mouse strain rederivation from either frozen embryos or embryos obtained from non-pathogen free mice; . Projects carried out by the facility have been funded by a peer-reviewed federal or private grant, and the experimental protocol receives prior approval from the University IACUC. Projects include: (1) altering signal transduction pathways and cell-cell adhesion in stratified squamous epithelia, and examining the relation of these alterations to hyperproliferative disorders and skin cancers; (2) altering the expression of cell survival and death factors in mice and examining the molecular consequences; (3) perturbing growth control and inflammatory responses in cells of the immune system; (4) examining the roles of chromosomal breakpoint genes on tumorigenesis; (5) examining the functions of transcription factors on stem cell maintenance, cell-type specific gene expression, development and differentiation, and assessing the biological consequences and relevance to cancer when they are misregulated; and (6) exploring mechanisms of somatic hypermutation of genes in B-cell development. These studies have been central to the investigative goals of cancer researchers on campus; the contributions are of fundamental importance to our understanding of cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA014599-28
Application #
6592114
Study Section
Project Start
2002-05-15
Project End
2007-03-31
Budget Start
Budget End
Support Year
28
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
225410919
City
Chicago
State
IL
Country
United States
Zip Code
60637
Zeineddine, Hussein A; Girard, Romuald; Saadat, Laleh et al. (2018) Phenotypic characterization of murine models of cerebral cavernous malformations. Lab Invest :
Kane, Melissa; Deiss, Felicity; Chervonsky, Alexander et al. (2018) A Single Locus Controls Interferon Gamma-Independent Antiretroviral Neutralizing Antibody Responses. J Virol 92:
Xiao, Annie; Crosby, Jennie; Malin, Martha et al. (2018) Single-institution report of setup margins of voluntary deep-inspiration breath-hold (DIBH) whole breast radiotherapy implemented with real-time surface imaging. J Appl Clin Med Phys 19:205-213
Gamazon, Eric R; Trendowski, Matthew R; Wen, Yujia et al. (2018) Gene and MicroRNA Perturbations of Cellular Response to Pemetrexed Implicate Biological Networks and Enable Imputation of Response in Lung Adenocarcinoma. Sci Rep 8:733
Girard, Romuald; Zeineddine, Hussein A; Koskimäki, Janne et al. (2018) Plasma Biomarkers of Inflammation and Angiogenesis Predict Cerebral Cavernous Malformation Symptomatic Hemorrhage or Lesional Growth. Circ Res 122:1716-1721
Day, Kasey J; Casler, Jason C; Glick, Benjamin S (2018) Budding Yeast Has a Minimal Endomembrane System. Dev Cell 44:56-72.e4
Pu, Jinyue; Kentala, Kaitlin; Dickinson, Bryan C (2018) Multidimensional Control of Cas9 by Evolved RNA Polymerase-Based Biosensors. ACS Chem Biol 13:431-437
Pectasides, Eirini; Stachler, Matthew D; Derks, Sarah et al. (2018) Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma. Cancer Discov 8:37-48
Liu, Hongtao; Zha, Yuanyuan; Choudhury, Noura et al. (2018) WT1 peptide vaccine in Montanide in contrast to poly ICLC, is able to induce WT1-specific immune response with TCR clonal enrichment in myeloid leukemia. Exp Hematol Oncol 7:1
Nageeb, Shaheen; Vu, Milkie; Malik, Sana et al. (2018) Adapting a religious health fatalism measure for use in Muslim populations. PLoS One 13:e0206898

Showing the most recent 10 out of 668 publications