Laser Capture Microdissection (LCM) is rapidly emerging as an essential tool for the investigation of mechanisms of carcinogenesis, diagnosis and classification of neoplasms, and the evaluation of innovative therapies. The technology was originally developed by investigators at the National Cancer Institute, and the instrument that was ultimately produced (Arcturus PixCell) is now in use in more than 600 sites worldwide. Because the instrument is expensive and requires special expertise for optimal utility, the development of a Core Facility for use of all UCCRC members is an attractive option. The development of a LCM Core Facility at the University of Chicago has been a common goal and high priority of the UCCRC, the Department of Pathology, and the Dean of the Biologic Sciences Division, all of which have made financial commitments to ensure its success. The PixCell instrument was installed within the Department of Pathology in January, 2001. The facility is under the direction of John Hart, M.D., of the section of Surgical Pathology. Maria Tretiakova, M.D., Ph.D., who has hands on training to use LCM has been recruited as Technical Director. The necessary laboratory protocols have been developed and rigorously tested, and a quality assurance program has been instituted. The facility is open to use by the entire University community, and UCCRC members receive services at a discounted rate. Many investigators who are UCCRC members have already committed to use of the facility.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA014599-28
Application #
6599179
Study Section
Subcommittee E - Prevention &Control (NCI)
Project Start
2002-05-15
Project End
2007-03-31
Budget Start
Budget End
Support Year
28
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
225410919
City
Chicago
State
IL
Country
United States
Zip Code
60637
Sample, Ashley; Zhao, Baozhong; Wu, Chunli et al. (2018) The Autophagy Receptor Adaptor p62 is Up-regulated by UVA Radiation in Melanocytes and in Melanoma Cells. Photochem Photobiol 94:432-437
Hrusch, C L; Manns, S T; Bryazka, D et al. (2018) ICOS protects against mortality from acute lung injury through activation of IL-5+ ILC2s. Mucosal Immunol 11:61-70
Hope, C Matthew; Webber, Jemma L; Tokamov, Sherzod A et al. (2018) Tuned polymerization of the transcription factor Yan limits off-DNA sequestration to confer context-specific repression. Elife 7:
Wu, Chengyue; Pineda, Federico; Hormuth 2nd, David A et al. (2018) Quantitative analysis of vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast tumors. Magn Reson Med :
Wong, Gabrielle S; Zhou, Jin; Liu, Jie Bin et al. (2018) Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat Med 24:968-977
Ni, Kaiyuan; Lan, Guangxu; Chan, Christina et al. (2018) Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat Commun 9:2351
Meisel, Marlies; Hinterleitner, Reinhard; Pacis, Alain et al. (2018) Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557:580-584
Webber, Jemma L; Zhang, Jie; Massey, Alex et al. (2018) Collaborative repressive action of the antagonistic ETS transcription factors Pointed and Yan fine-tunes gene expression to confer robustness in Drosophila. Development 145:
Wei, Jiangbo; Liu, Fange; Lu, Zhike et al. (2018) Differential m6A, m6Am, and m1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Mol Cell 71:973-985.e5
Boisclair Lachance, Jean-François; Webber, Jemma L; Hong, Lu et al. (2018) Cooperative recruitment of Yan via a high-affinity ETS supersite organizes repression to confer specificity and robustness to cardiac cell fate specification. Genes Dev 32:389-401

Showing the most recent 10 out of 668 publications