The Pharmacology Core Facility conducts clinical pharmacology, biochemical correlates, and pharmacogenetic studies with the aim of improving the quality of life and outcome for cancer patients. The Facility is essential for the development, validation, and implementation of analytical methods to assess the effect of pharmacokinetics or pharmacodynamics, and for measuring biochemical correlates necessary to optimize drug administration schedules. Some novel anticancer therapies require determination of the optimal dose based on a biochemical endpoint and the Pharmacology Core is equipped to define the bio-modulatory dose. The Facility offers DMA and RNA isolation for pharmacogenetic studies. The Scientific Director of the Facility is M. Eileen Dolan, PhD, and the Technical Directors are Jacqueline Ramirez, MS (Analytical Component) and Shannon Delaney (Biochemical Component). Dr. Dolan has extensive experience in biochemical enzyme assays, drug metabolism, and pharmacokinetic/pharmacodynamic studies of anticancer agents. Ms. Ramirez and Delaney are responsible for quality control, analytical method development, maintenance of analytical equipment, and preparation of reports. The Facility renders analytical and biochemical services to investigators within the University (both members and non-members of the UCCRC), as well as investigators at other Cancer Centers. In addition, Dr. Dolan provides consultative services on study and assay design.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014599-34
Application #
7843297
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
34
Fiscal Year
2009
Total Cost
$133,465
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Trujillo, Jonathan A; Sweis, Randy F; Bao, Riyue et al. (2018) T Cell-Inflamed versus Non-T Cell-Inflamed Tumors: A Conceptual Framework for Cancer Immunotherapy Drug Development and Combination Therapy Selection. Cancer Immunol Res 6:990-1000
Zeng, Zongyue; Huang, Bo; Huang, Shifeng et al. (2018) The development of a sensitive fluorescent protein-based transcript reporter for high throughput screening of negative modulators of lncRNAs. Genes Dis 5:62-74
Lee, Ji-Hye; Park, Beom Seok; Han, Kang R et al. (2018) Insight Into the Interaction Between RNA Polymerase and VPg for Murine Norovirus Replication. Front Microbiol 9:1466
Cheng, Jason X; Chen, Li; Li, Yuan et al. (2018) RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat Commun 9:1163
Johnson, Marianna B; Hoffmann, Joscelyn N; You, Hannah M et al. (2018) Psychosocial Stress Exposure Disrupts Mammary Gland Development. J Mammary Gland Biol Neoplasia 23:59-73
Sweis, Randy F; Zha, Yuanyuan; Pass, Lomax et al. (2018) Pseudoprogression manifesting as recurrent ascites with anti-PD-1 immunotherapy in urothelial bladder cancer. J Immunother Cancer 6:24
Kathayat, Rahul S; Cao, Yang; Elvira, Pablo D et al. (2018) Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes. Nat Commun 9:334
Liu, Jun; Eckert, Mark A; Harada, Bryan T et al. (2018) m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol 20:1074-1083
Bhanvadia, Raj R; VanOpstall, Calvin; Brechka, Hannah et al. (2018) MEIS1 and MEIS2 Expression and Prostate Cancer Progression: A Role For HOXB13 Binding Partners in Metastatic Disease. Clin Cancer Res 24:3668-3680
Wood, Kevin; Byron, Elizabeth; Janisch, Linda et al. (2018) Capecitabine and Celecoxib as a Promising Therapy for Thymic Neoplasms. Am J Clin Oncol 41:963-966

Showing the most recent 10 out of 668 publications