The Immunology and Cancer (IC) Program has been an integral part of the UCCCC for more than 25 years. It has 22 members from 6 Departments, and is supported by a total of $13,081,506 in annual peer reviewed funding (direct costs), of which $2,351,962 comes from the NCI. Over the previous funding period (encompassing 4 years). Program members have produced a total of 219 peer-reviewed cancer relevant publications, with 29% published in the highest impact journals;18% of these were interprogrammatic and 9% were intraprogrammatic. The broad goals of the Immunology and Cancer Program are to understand the interface between the host immune system and a malignant tumor and, ultimately, to manipulate that interaction to promote immune-mediated tumor destruction in patients with cancer. It is well established that tumors can express antigens that can be recognized by specific T cells or antibodies. Identifying the reasons why a given cancer is not eliminated spontaneously should highlight the major barriers that need to be overcome in order to restore immune control over the tumor. The research themes of the program focus on understanding the mechanisms of innate immune activation and productive antigen presentation;activation and differentiation of lymphocytes into effector/memory states;trafficking into inflamed target tissues and control of local inflammation;and overcoming mechanisms of peripheral immune tolerance. Basic concepts are integrated into mouse preclinical tumor models, and novel clinical trials are performed to capitalize on this new knowledge translationally, many in collaboration with clinical investigators outside of the Program. The clinical/translational effort is supported by several key Core Facilities, in particular the Human Immunologic Monitoring-cGMP Facility. By incorporating detailed scientific endpoint monitoring into clinical studies, new key information is generated that has led to the development of new hypothesess that are interrogated back in the laboratory. Thus, the Immunology and Cancer Program is a clear example of bi-directional translational research.

Public Health Relevance

A deeper understanding of the regulation of the host immune response against tumors has led to new immunotherapy approaches for the treatment of cancer. The recent FDA approval of ipilimumab for melanoma has generated a paradigm shift for the field. Furthering our basic knowledge in this arena and continuing the development of novel immunotherapies should translate into more durable clinical outcomes.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA014599-39
Application #
8744828
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
39
Fiscal Year
2014
Total Cost
$15,782
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Zeineddine, Hussein A; Girard, Romuald; Saadat, Laleh et al. (2018) Phenotypic characterization of murine models of cerebral cavernous malformations. Lab Invest :
Kane, Melissa; Deiss, Felicity; Chervonsky, Alexander et al. (2018) A Single Locus Controls Interferon Gamma-Independent Antiretroviral Neutralizing Antibody Responses. J Virol 92:
Xiao, Annie; Crosby, Jennie; Malin, Martha et al. (2018) Single-institution report of setup margins of voluntary deep-inspiration breath-hold (DIBH) whole breast radiotherapy implemented with real-time surface imaging. J Appl Clin Med Phys 19:205-213
Gamazon, Eric R; Trendowski, Matthew R; Wen, Yujia et al. (2018) Gene and MicroRNA Perturbations of Cellular Response to Pemetrexed Implicate Biological Networks and Enable Imputation of Response in Lung Adenocarcinoma. Sci Rep 8:733
Girard, Romuald; Zeineddine, Hussein A; Koskimäki, Janne et al. (2018) Plasma Biomarkers of Inflammation and Angiogenesis Predict Cerebral Cavernous Malformation Symptomatic Hemorrhage or Lesional Growth. Circ Res 122:1716-1721
Day, Kasey J; Casler, Jason C; Glick, Benjamin S (2018) Budding Yeast Has a Minimal Endomembrane System. Dev Cell 44:56-72.e4
Pu, Jinyue; Kentala, Kaitlin; Dickinson, Bryan C (2018) Multidimensional Control of Cas9 by Evolved RNA Polymerase-Based Biosensors. ACS Chem Biol 13:431-437
Pectasides, Eirini; Stachler, Matthew D; Derks, Sarah et al. (2018) Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma. Cancer Discov 8:37-48
Liu, Hongtao; Zha, Yuanyuan; Choudhury, Noura et al. (2018) WT1 peptide vaccine in Montanide in contrast to poly ICLC, is able to induce WT1-specific immune response with TCR clonal enrichment in myeloid leukemia. Exp Hematol Oncol 7:1
Nageeb, Shaheen; Vu, Milkie; Malik, Sana et al. (2018) Adapting a religious health fatalism measure for use in Muslim populations. PLoS One 13:e0206898

Showing the most recent 10 out of 668 publications