The Pharmacogenomics and Experimental Therapeutics (PhET) Program is a cohesive, integrated group that brings together a diverse team of 48 members representing 9 different Departments. PhET interfaces with all of the other Programs to integrate fundamental cancer research with clinical care and clinical research objectives. The overall goal of the Program is to foster interaction between basic and clinical investigators, with a focus on pharmacogenomics and innovative molecular targets that are evaluated in the context of bio- or genetic- marker driven clinical trials at all phases of drug development, with the ultimate goal of developing innovative, personalized and effective therapies for cancer patients. The two program coleaders, M. Eileen Dolan, PhD, a laboratory-based scientist with experience in preclinical and translational studies, and Walter Stadler, MD, a physician-scientist with expertise in clinical trials and clinical drug development, work well together to promote the goals of the PhET Program. The Program's investigators have made major contributions including the identification of putative pharmacogenomic predictors of cancer therapeutic efficacy and toxicity, elucidation of predictive biomarkers of molecular pathway-directed therapy, and discovery of DNA repair mechanisms that have the potential for being therapeutic targets. Pharmacogenomic research within the program interfaces with basic research, translational, clinical and implementation science. The discoveries and contributions span the entire spectrum of translational research including classic """"""""bench-to-bedside"""""""" and """"""""bedside-to-bench"""""""" concepts (i.e., """"""""T1 translation""""""""), as well as translation from research to practice in what has been termed 'T2"""""""" translation or implementation science. The integrated scientific themes are: 1) Translational pharmacogenomic studies through pathway-directed as well as unbiased discovery approaches in model and clinical systems; 2) Development of novel therapeutic molecular targets, including angiogenesis, DNA repair, and defined molecular pathways; 3) Novel Phase I, II, and III biomarker-driven clinical trials, including the development of combined modality approaches, and novel clinical trial designs;and 4) Studies to incorporate biomarkers, and especially pharmacogenomic biomarkers, into clinical care.
The Pharmacogenomics and Experimental Therapeutics program is the clinical and translational component of the University of Chicago Comprehensive Cancer Center and provides expertise in evaluation of molecular therapeutic targets to implementation in a clinical setting, with an emphasis on pharmacogenomics.
Showing the most recent 10 out of 668 publications