The Cancer Prevention and Control (CPC) Program is engaged in defining, evaluating, and implementing novel interventions to reduce cancer incidence, minimize disease- and treatment-related symptoms, and enhance overall survivorship. CPC investigators apply state-of-the-science agents, assays, and study designs to advance the field in 2 prioritized areas: 1) Cancer Risk Reduction, including chemoprevention, tobacco control, and cancer early detection research; and 2) Symptom Control & Survivorship, integrating basic, clinical, and community-based studies to improve cancer care. This intentionally focused framework provides an efficient structure for innovative, collaborative investigation in both the cancer prevention and cancer control settings. CPC Risk Reduction research activities are concentrated on inhibiting preinvasive neoplasia, precluding (or lowering) tobacco exposure, and identifying asymptomatic tumors at the earliest possible stage. For Symptom Control and Survivorship, research activities are directed at eliminating or controlling untoward symptoms related to disease progression or treatment, and optimizing quality and quantity of life following a cancer diagnosis. To achieve its intended goals, the CPC Program has assembled an interdisciplinary team of 50 members from 20 departments across all 3 Mayo Clinic campuses. Total direct peer-reviewed funding is $4.1M (54% from the NCI), and total direct funding is $5.2M. Since 2013, the Program has generated 661 publications, 26% reflecting intraprogrammatic collaborations and 33% reflecting interprogrammatic collaborations. Notable contributions have been made with respect to each Program aim, as evidenced by the incorporation of study results into chemoprevention agent development planning, clinical practice standards, and public health policies. Dr. Loprinzi co-leads the CPC Program along with Dr. Limburg, who joined the leadership dyad in June 2017. Under this leadership pairing, the Program has reorganized its research activities to provide a strong foundation for accelerating impactful research and has also launched several new initiatives to increase opportunities for collaboration between the CPC Program and other key internal and external stakeholder groups. Major CPC Program activities anticipated for the next 5 years include further conduct of cutting-edge, team-based research related to the discovery, translation, and application of promising chemoprevention agents, cancer vaccines, tobacco cessation and nicotine avoidance strategies, early-detection biomarkers, multi-organ screening approaches (such as ?liquid biopsy?), imaging technologies, symptom management, and survivorship care. The Program makes extensive use of Shared Resources, in particular: Biospecimens Accessioning and Processing (BAP), Biostatistics (BSR), Genome Analysis (GEN), Pharmacy (PHM) and the MCCC Clinical Research Office (CRO).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA015083-47
Application #
10113617
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-04-25
Project End
2024-02-29
Budget Start
2021-03-01
Budget End
2022-02-28
Support Year
47
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Jahanseir, Khadijeh; Xing, Deyin; Greipp, Patricia T et al. (2018) PDGFB Rearrangements in Dermatofibrosarcoma Protuberans of the Vulva: A Study of 11 Cases Including Myxoid and Fibrosarcomatous Variants. Int J Gynecol Pathol 37:537-546
Painter, Jodie N; O'Mara, Tracy A; Morris, Andrew P et al. (2018) Genetic overlap between endometriosis and endometrial cancer: evidence from cross-disease genetic correlation and GWAS meta-analyses. Cancer Med 7:1978-1987
Yu, Jia; Qin, Bo; Moyer, Ann M et al. (2018) DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J Clin Invest 128:2376-2388
Sugihara, Takaaki; Werneburg, Nathan W; Hernandez, Matthew C et al. (2018) YAP Tyrosine Phosphorylation and Nuclear Localization in Cholangiocarcinoma Cells Are Regulated by LCK and Independent of LATS Activity. Mol Cancer Res 16:1556-1567
Natanzon, Yanina; Goode, Ellen L; Cunningham, Julie M (2018) Epigenetics in ovarian cancer. Semin Cancer Biol 51:160-169
Kleinstern, Geffen; Camp, Nicola J; Goldin, Lynn R et al. (2018) Association of polygenic risk score with the risk of chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis. Blood 131:2541-2551
Liu, Gang; Mukherjee, Bhramar; Lee, Seunggeun et al. (2018) Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence. Am J Epidemiol 187:366-377
Ong, Jue-Sheng; Hwang, Liang-Dar; Cuellar-Partida, Gabriel et al. (2018) Assessment of moderate coffee consumption and risk of epithelial ovarian cancer: a Mendelian randomization study. Int J Epidemiol 47:450-459
Kumar, Shaji K; Buadi, Francis K; LaPlant, Betsy et al. (2018) Phase 1/2 trial of ixazomib, cyclophosphamide and dexamethasone in patients with previously untreated symptomatic multiple myeloma. Blood Cancer J 8:70
Schafer, Eric S; Rau, Rachel E; Berg, Stacey et al. (2018) A phase 1 study of eribulin mesylate (E7389), a novel microtubule-targeting chemotherapeutic agent, in children with refractory or recurrent solid tumors: A Children's Oncology Group Phase 1 Consortium study (ADVL1314). Pediatr Blood Cancer 65:e27066

Showing the most recent 10 out of 1129 publications