Immunology and Vaccine Development Program The Immunology and Vaccine Development (IVD) Program bring together researchers and clinicians engaged in the study of cancer immunobiology, basic immunology, immunotherapy, vaccinology, and infectious diseases who shared a vision of developing immunologic strategies that could be deployed to harness the immune system for targeting malignancies as well as infectious diseases that develop and progress in immuno-compromised individuals. Modulating the immune system with vaccines for the prevention of human infections has had many very dramatic successes, but the paradigms and strategies for reagent development to prevent diseases such as polio or diphtheria have proven neither adequate nor readily translatable to infections such as HIV and tuberculosis or to the treatment of cancer. The IVD program strengthens existing collaborative interactions, provides opportunities for new collaborations, and promotes a synergy of research efforts that will accelerate progress in cancer immunology, immuno-therapeutics, and cancer vaccine development. The program's 50 members, 96% of whom have peer-reviewed funding, are drawn from all three partners institutions, three schools and 16 departments. The program has $16.8M in peer reviewed funding, including $4.8M from the NCI (direct dollars.) Program members are highly productive and collaborative, with 994 peer-reviewed publications during this grant period, of which 22% were intra-programmatic, 26% were inter-programmatic and 22% were inter-institutional. The program's specific aims are to: 1. Develop a greater breadth of cellular therapy interventional clinical trials, including initiating trials to advance cellular therapy to become an approved standard therapy for leukemia and solid tumors. 2. Define the immunological obstacles in the host and tumor microenvironment that interfere with effective immunotherapeutic targeting of tumors so that strategies can be developed to effectively treat cancers not currently responsive to therapy. 3. Identify, test, and validate improved strategies for infection control in immune compromised cancer patients. 4. Adapt and translate insights from our basic, preclinical, and clinical studies in vaccine biology to enhance immune responses to cancer antigens and improve the efficacy of adoptive T cell transfer.
Showing the most recent 10 out of 1267 publications