Stress is a fundamental part of life for all cells and organisms and dealing successfully with stress facilitates survival in cells and whole organisms. Oncogenic transformation creates substantial intrinsic cell stress (e.g. metabolic, proteotoxic, DNA damage stresses). Tumor cells respond to intrinsic stress in numerous, highly conserved ways, some of which facilitate cell survival. Tumor growth may also cause changes in the microenvironment in which malignant cells develop - changes which add additional extrinsic stress factors (e.g. inflammation, hypoxia, high interstitial fluid pressure, nutritional deprivation, low pH). Finally, anticancer therapy adds to both intrinsic cell stress and may change the tumor microenvironment, modifying those stress factors, too. Cell Stress and Biophysical Therapies (CSBT) Program members are committed to understanding the mechanisms and responses in tumor cells which help them evade anticancer therapies as well as host antitumor responses. The overall goal of the CSBT Program is to identify, understand and exploit tumor cell stress and microenvironment mechanisms, and to use this to develop novel therapies. Members share interest in the imaging and therapy potential for modalities such as light, heat and ionizing radiation energies. There are three research themes in the program and each integrates basic, translational and clinical science: 1) Understanding intrinsic cancer cell stress mechanisms, 2) Understanding stress mechanisms in the host/tumor microenvironment and 3) Protecting normal cells/tissues from therapy-induced damage. The Program is co-led by Drs. Andrei Gudkov and Elizabeth Repasky each of whom has successful and complimentary research programs that span the themes of the program. Retreats and monthly program meetings focus on basic and translational research and discussions of new collaborations and clinical trial opportunities. Since the last review, the laboratories of the CSBT members have moved into closer proximity in the newly constructed Center for Genetics and Pharmacology. The program is comprised of 20 members from 8 different RPCI departments. Current annual total peer-reviewed program funding is $S.4M, of which $2.6M is NCI, and the total extramural research funding is $6.9M. Of the 353 publications of CSBT members over the last funding cycle, 21% are intra-programmatic and 20% are inter-programmatic. Importantly, the number of high impact papers (Impact Factor>10) has significantly increased (10 to 33) while at the same time, the major goal of developing new clinical trials emerging from research developed within the CSBT Program continues to be very strong and successful.

Public Health Relevance

It is now clear that the stress response in tumors, combined with stress-induced damage to normal tissues, are significant factors in therapeutic failure and tumor regrowth/metastasis. A more complete understanding of the mechanisms whereby stress, and stress responses increase the resistance of tumor cells to death, while exposing normal tissues to significant damage, will enable identification of new factors to target for blocking the responses and will increase tumor sensitivity to therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016056-37
Application #
8738360
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-06-16
Project End
2019-04-30
Budget Start
2014-06-26
Budget End
2015-04-30
Support Year
37
Fiscal Year
2014
Total Cost
$37,715
Indirect Cost
$14,918
Name
Roswell Park Cancer Institute Corp
Department
Type
DUNS #
824771034
City
Buffalo
State
NY
Country
United States
Zip Code
14263
Terakawa, Tomoaki; Katsuta, Eriko; Yan, Li et al. (2018) High expression of SLCO2B1 is associated with prostate cancer recurrence after radical prostatectomy. Oncotarget 9:14207-14218
Zhu, Qianqian; Yan, Li; Liu, Qian et al. (2018) Exome chip analyses identify genes affecting mortality after HLA-matched unrelated-donor blood and marrow transplantation. Blood 131:2490-2499
Lu, Yingchang; Beeghly-Fadiel, Alicia; Wu, Lang et al. (2018) A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Res 78:5419-5430
Li, Yanchun; Opyrchal, Mateusz; Yao, Song et al. (2018) The role of programmed death ligand-1 and tumor-infiltrating lymphocytes in breast cancer overexpressing HER2 gene. Breast Cancer Res Treat 170:293-302
Mastri, Michalis; Lee, Christina R; Tracz, Amanda et al. (2018) Tumor-Independent Host Secretomes Induced By Angiogenesis and Immune-Checkpoint Inhibitors. Mol Cancer Ther 17:1602-1612
Visioni, Anthony; Kim, Minhyung; Wilfong, Chandler et al. (2018) Intra-arterial Versus Intravenous Adoptive Cell Therapy in a Mouse Tumor Model. J Immunother 41:313-318
Sass, Stephanie N; Ramsey, Kimberley D; Egan, Shawn M et al. (2018) Tumor-associated myeloid cells promote tumorigenesis of non-tumorigenic human and murine prostatic epithelial cell lines. Cancer Immunol Immunother 67:873-883
Neubauer, Bjoern; Schrankl, Julia; Steppan, Dominik et al. (2018) Angiotensin II Short-Loop Feedback: Is There a Role of Ang II for the Regulation of the Renin System In Vivo? Hypertension 71:1075-1082
Dong, Jing; Levine, David M; Buas, Matthew F et al. (2018) Interactions Between Genetic Variants and Environmental Factors Affect Risk of Esophageal Adenocarcinoma and Barrett's Esophagus. Clin Gastroenterol Hepatol 16:1598-1606.e4
Tario Jr, Joseph D; Conway, Alexis N; Muirhead, Katharine A et al. (2018) Monitoring Cell Proliferation by Dye Dilution: Considerations for Probe Selection. Methods Mol Biol 1678:249-299

Showing the most recent 10 out of 1555 publications