It is now clear that tumor-immune system interactions are far more complex than simple CTL-mediated tumor cell killing, and that effectively harnessing the immune system to control human cancers requires an integrated understanding of immune interactions ranging from clinically significant anti-tumor immunity, to counter-regulatory limitation of this immunity, to immune responses that actually support tumor development and survival. The overall goal of the Tumor Immunology and Immunotherapy (Til) program is to translate the understanding of the immune responses to cancer (both anti-tumor and pro-survival) into innovative approaches for the assessment and treatment of patients with cancer. To accomplish this, TH research is focused around four inter-related themes: Theme 1: Biology of immune cell cancers;Theme 2: Mechanisms of immunological tumor rejection;Theme 3;Microenvironment and host-tumor interactions and Theme 4;Immunotherapy and clinical discovery. The Program is co-led by Kelvin Lee, MD and Kunle Odunsi MD, PhD, who have strong interests in both basic and clinical/population aspects of tumor immunology and immunotherapy. Dr. Lee's leadership efforts focus on the basic and preclinical/translational research in the Program, which dovetails with Dr. Odunsi's leadership focus on the translation and clinical research efforts. The ability to translate research is a particular strength of TH, due in large part to the robust and longstanding inter-programmatic and basic science-clinical interactions. This strength has been enhanced over the last funding cycle by the establishment of the RPCI Center for Immunotherapy (CFI), led by Dr. Odunsi. The CFl houses all the RPCI immunotherapy clinical trials and infrastructure, including new cGMP production and clinical immunomonitoring facilities. These initiatives have occurred in conjunction with relocation (in 2008) of TH membership into 50,000 square feet of new contiguous laboratory space in the new RPCI Center for Pharmacology &Genetics, and the ongoing complete renovation of 36,800 sf in the Cancer Cell Center (supported by C06 RR 020132-01 A l , K. Lee PI) to house TH and CFI members. The Program is comprised of 28 members from 8 RPCI departments (Immunology, Pediatrics, Neurosurgery, Medicine, Molecular and Cellular Biology, Gynecologic Oncology, Cancer Prevention and Control, Surgical Oncology and Pathology), whose total peer-reviewed funding is $10.9M (NCI funding $3.2M) and a total funding of $14.2M. This compares to $6.9M peer reviewed/$9.0M total funding at the last renewal. Since the last renewal, 5 TH members have left the Institute and 3 others have moved to other Programs, while 15 new members (9 recruited from outside the Institute) have joined. Of the 481 publications generated over the last funding cycle, 22% are intra-programmatic and 20% are inter-programmatic, 50 publications are in journals with Impact Factor>10. The Program continues to actively translate its basic science into the clinical arena, with 16 active investigator-initiated trials currently accruing.

Public Health Relevance

It has now become clear that various components ofthe immune system play opposing roles in inhibiting cancer growth as well as supporting its survival. The research ofthe Tumor Immunology and Immunotherapy Program seeks to understand how the immune system responds to cancer, and apply this understanding to new and innovative approaches to diagnose and treat patients with cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016056-37
Application #
8738366
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-06-16
Project End
2019-04-30
Budget Start
2014-06-26
Budget End
2015-04-30
Support Year
37
Fiscal Year
2014
Total Cost
$39,194
Indirect Cost
$15,503
Name
Roswell Park Cancer Institute Corp
Department
Type
DUNS #
824771034
City
Buffalo
State
NY
Country
United States
Zip Code
14263
Wang, Xue; Niu, Jin; Li, Jun et al. (2018) Temporal Effects of Combined Birinapant and Paclitaxel on Pancreatic Cancer Cells Investigated via Large-Scale, Ion-Current-Based Quantitative Proteomics (IonStar). Mol Cell Proteomics 17:655-671
Burkard-Mandel, Lauren; O'Neill, Rachel; Colligan, Sean et al. (2018) Tumor-derived thymic stromal lymphopoietin enhances lung metastasis through an alveolar macrophage-dependent mechanism. Oncoimmunology 7:e1419115
Rosario, S R; Long, M D; Affronti, H C et al. (2018) Pan-cancer analysis of transcriptional metabolic dysregulation using The Cancer Genome Atlas. Nat Commun 9:5330
Tsuji, Takemasa; Yoneda, Akira; Matsuzaki, Junko et al. (2018) Rapid Construction of Antitumor T-cell Receptor Vectors from Frozen Tumors for Engineered T-cell Therapy. Cancer Immunol Res 6:594-604
Narayanan, Sumana; Kawaguchi, Tsutomu; Yan, Li et al. (2018) Cytolytic Activity Score to Assess Anticancer Immunity in Colorectal Cancer. Ann Surg Oncol 25:2323-2331
Ratajczak, Alexsandra; Feleszko, Wojciech; Smith, Danielle M et al. (2018) How close are we to definitively identifying the respiratory health effects of e-cigarettes? Expert Rev Respir Med 12:549-556
Terakawa, Tomoaki; Katsuta, Eriko; Yan, Li et al. (2018) High expression of SLCO2B1 is associated with prostate cancer recurrence after radical prostatectomy. Oncotarget 9:14207-14218
Zhu, Qianqian; Yan, Li; Liu, Qian et al. (2018) Exome chip analyses identify genes affecting mortality after HLA-matched unrelated-donor blood and marrow transplantation. Blood 131:2490-2499
Lu, Yingchang; Beeghly-Fadiel, Alicia; Wu, Lang et al. (2018) A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Res 78:5419-5430
Li, Yanchun; Opyrchal, Mateusz; Yao, Song et al. (2018) The role of programmed death ligand-1 and tumor-infiltrating lymphocytes in breast cancer overexpressing HER2 gene. Breast Cancer Res Treat 170:293-302

Showing the most recent 10 out of 1555 publications