The OSUCCC Microarray Shared Resource (MASR) was established as a """"""""developing"""""""" Shared Resource in 1998 with genome wide expression analysis, and subsequently became a full shared resource in 1999 offering genome wide expression analysis using Affymetrix GeneChips. In November 2004, under the direction of Dr. Cario Croce, the MASR underwent a massive expansion with an infusion of capital from the CCC's institutional resources. Dr. Croce developed and built the first microarray to study microRNAs which has now been utilized by a multitude of OSUCCC investigators, by CCC investigators from the NCI and other NCI-designated cancer centers and by investigators from around the world. In 2008, MASR acquired Agilent and Exiqon microarray platforms. The MASR has thus kept up with the dramatic expansion of demands for nucleic acid-based technologies in cancer research in order to serve CCC members with an outstanding range of expression analyses. For projects utilizing microarray technologies, MASR offers multiple unique, cost effective, and comprehensive state-of-the-art services and experience, including timely experimental design consultation, genome wide expression and SNP/mutation analysis on microarray and on next-generation instrumentation, array comparative genomic hybridization (CGH) assessment of DNA and RNA integrity, quantification of DNA and RNA, design, fabrication and validation of custom microarrays, quality sample processing, hybridization, and scanning. Microarray analysis supports studies of the diverse genetic profile of cancer including analysis of genomes, epigenomes and transcriptomes in murine and human systems including both normal and malignant tissues from cancer patients. MASR uses CAarray and trains investigators to upload results to Gene Expression Omnibus (http//www/ncbi.nim.nih.gov/geo). Through outstanding institutional support and leveraging of CCSG resources, MASR has developed into a robust centralized shared resource serving the needs of OSUCCC investigators, cancer researchers in the state of Ohio, and nationally with multiple NCI cancer centers. As predicted in our last review, regular usage of the MASR has grown by over 100%, in part the result of a $2.0 m in capital investment by the CCC into the MASR equipment using institutional support. During the past 12 months, the faculty and staff of the MASR have worked with 52 OSUCCC members coming from five of the six OSUCCC scientific programs. OSUCCC members with peer-reviewed funded accounted for 71.8% of the MASR usage;overall OSUCCC usage is 88.9%. These past 12 months indicate a continuous robust demand for MASR services and predict expanded demand for MASR services.

Public Health Relevance

The Microarray Shared Resource (MASR) offers unique, cost-effective, and timely technical and professional expertise that promotes high-quality science. Services include: timely experimental design consultation, genome wide expression and SNP/mutation analysis on microarray and on nextgeneration instrumentation, array comparative genomic hybridization (CGH) assessment of DNA and RNA integrity, quantification of DNA and RNA, design, fabrication and validation of custom microarrays, quality sample processing, hybridization, and scanning. Outstanding institutional support allows the MASR to contribute to cutting edge-cancer research that integrates OSUCCC investigations across the entire University, state of Ohio, and nationally with multiple NCI Cancer Centers.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016058-37
Application #
8567304
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
37
Fiscal Year
2013
Total Cost
$162,697
Indirect Cost
$56,010
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Sprague, Leslee; Lee, Joel M; Hutzen, Brian J et al. (2018) High Mobility Group Box 1 Influences HSV1716 Spread and Acts as an Adjuvant to Chemotherapy. Viruses 10:
Nakashima, Hiroshi; Alayo, Quazim A; Penaloza-MacMaster, Pablo et al. (2018) Modeling tumor immunity of mouse glioblastoma by exhausted CD8+ T cells. Sci Rep 8:208
Coss, Christopher C; Clinton, Steven K; Phelps, Mitch A (2018) Cachectic Cancer Patients: Immune to Checkpoint Inhibitor Therapy? Clin Cancer Res 24:5787-5789
Rogers, Kerry A; Huang, Ying; Ruppert, Amy S et al. (2018) Phase 1b study of obinutuzumab, ibrutinib, and venetoclax in relapsed and refractory chronic lymphocytic leukemia. Blood 132:1568-1572
Eisfeld, Ann-Kathrin; Kohlschmidt, Jessica; Mrózek, Krzysztof et al. (2018) Mutation patterns identify adult patients with de novo acute myeloid leukemia aged 60 years or older who respond favorably to standard chemotherapy: an analysis of Alliance studies. Leukemia 32:1338-1348
Burton, Jenna H; Mazcko, Christina; LeBlanc, Amy et al. (2018) NCI Comparative Oncology Program Testing of Non-Camptothecin Indenoisoquinoline Topoisomerase I Inhibitors in Naturally Occurring Canine Lymphoma. Clin Cancer Res 24:5830-5840
Salzer, Wanda L; Burke, Michael J; Devidas, Meenakshi et al. (2018) Toxicity associated with intensive postinduction therapy incorporating clofarabine in the very high-risk stratum of patients with newly diagnosed high-risk B-lymphoblastic leukemia: A report from the Children's Oncology Group study AALL1131. Cancer 124:1150-1159
Yu, Peter Y; Lopez, Gonzalo; Braggio, Danielle et al. (2018) miR-133a function in the pathogenesis of dedifferentiated liposarcoma. Cancer Cell Int 18:89
Eisfeld, Ann-Kathrin; Kohlschmidt, Jessica; Mrózek, Krzysztof et al. (2018) NF1 mutations are recurrent in adult acute myeloid leukemia and confer poor outcome. Leukemia 32:2536-2545
Ghoussaini, Maya; Edwards, Stacey L; Michailidou, Kyriaki et al. (2018) Publisher Correction: Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nat Commun 9:16193

Showing the most recent 10 out of 2602 publications