The OSUCCC Analytical Cytometry Shared Resource (ACSR) is an extensive, institutionally-supported shared service. This core provides one of the only means of rapidly and accurately analyzing multiple characteristics of biological particles while also being able to rapidly, accurately, and with high purity (>98%) sort out pure populations of cells of interest based on parameters designated by the investigator. Furthermore, this service provides OSUCCC members with the ability to obtain viable, sterile and pure populations of cells so that they may be individually cloned, can be assessed for immunological function, or can be examined for specific biochemical properties with minimal manipulations, compared to magnetic bead technologies. This shared resource has five primary goals: 1) Provide state of the art flow cytometry analysis and sorting on a fee-for-service basis;2) Provide individual training followed by 24-hour access to flow cytometry instrumentation for researchers who wish to conduct their own analysis;3) Develop and provide educational and training opportunities for new and experienced resource users as well as forums to introduce new instrumentation, technologies and reagents to OSUCCC investigators;4) Obtain and provide state-of-the-art equipment to support high quality cancer research for OSUCCC members;and 5) Introduce new, or pre-commercial, emerging technology to support high quality cancer research for OSUCCC members. The ACSR main facility is centrally located and has eight flow cytometry instruments, four of which are capable of sorting. Two flow cytometer analyzers are available for independent (24 hour access) and assisted analysis. In addition, commercial and prototype magnetic separation and analysis equipment is available. Five'of these instruments were purchased with institufional support of approximately $1,358,000 in the last four years. In order to meet the needs of heavy users and maintain adequate space and access, the ACSR has two satellite facilifies located in the James Cancer Hospital (JCH) and the OSU College of Veterinary Medicine (CVM). The CVM has three flow cytometers, one of which is equipped to safely sort virus infected cells. The ACSR Director is Jeffrey Chalmers, Ph.D. with a manager, Bryan McElwain, and two additional staff. The CVM satellite is managed by A. Nicole White and has an additional technician. In addition, this past year Mary Jo Burkhard, D.V.M., Ph.D. was recruited as a co-investigator in the ACSR focused on education and outreach. The ACSR continues to provide critical support to the investigators and scientific programs, including 14 clinical studies acfively using the services of the ACSR This past year, nearly 75% of the ACSR usage was from 63 CCSG peer-reviewed, funded OSUCCC investigators from all six programs who consumed over 4,300 hours of service, yet only 23.4% of the support came from the CCSG.

Public Health Relevance

The ACSR provides instrumentation and technical operation/support for cell identification, characterization and cell separation to OSUCCC members and the University community. The ACSR, through exceptional institutional support and experienced leadership, is designed to provide affordable and high quality service in each of these areas, based on a cost-effective charge-back system. This ACSR provides critical support to OSUCCC scientific programs and clinical studies, while contributing outstanding technical expertise to high quality scientific cancer research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016058-38
Application #
8601804
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
38
Fiscal Year
2014
Total Cost
$94,642
Indirect Cost
$32,582
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Baldassari, Federica; Zerbinati, Carlotta; Galasso, Marco et al. (2018) Screen for MicroRNA and Drug Interactions in Breast Cancer Cell Lines Points to miR-126 as a Modulator of CDK4/6 and PIK3CA Inhibitors. Front Genet 9:174
Yang, Xiaosong; Pan, You; Qiu, Zhaojun et al. (2018) RNF126 as a Biomarker of a Poor Prognosis in Invasive Breast Cancer and CHEK1 Inhibitor Efficacy in Breast Cancer Cells. Clin Cancer Res 24:1629-1643
Ozawa, Patricia Midori Murobushi; Alkhilaiwi, Faris; Cavalli, Iglenir João et al. (2018) Extracellular vesicles from triple-negative breast cancer cells promote proliferation and drug resistance in non-tumorigenic breast cells. Breast Cancer Res Treat 172:713-723
Ngankeu, Apollinaire; Ranganathan, Parvathi; Havelange, Violaine et al. (2018) Discovery and functional implications of a miR-29b-1/miR-29a cluster polymorphism in acute myeloid leukemia. Oncotarget 9:4354-4365
Lopez, Cecilia M; Yu, Peter Y; Zhang, Xiaoli et al. (2018) MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines. PLoS One 13:e0190086
Victor, Aaron R; Weigel, Christoph; Scoville, Steven D et al. (2018) Epigenetic and Posttranscriptional Regulation of CD16 Expression during Human NK Cell Development. J Immunol 200:565-572
Lampis, Andrea; Carotenuto, Pietro; Vlachogiannis, Georgios et al. (2018) MIR21 Drives Resistance to Heat Shock Protein 90 Inhibition in Cholangiocarcinoma. Gastroenterology 154:1066-1079.e5
Le Gallo, Matthieu; Rudd, Meghan L; Urick, Mary Ellen et al. (2018) The FOXA2 transcription factor is frequently somatically mutated in uterine carcinosarcomas and carcinomas. Cancer 124:65-73
Jones, Jeffrey A; Mato, Anthony R; Wierda, William G et al. (2018) Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol 19:65-75
Madan, Esha; Parker, Taylor M; Bauer, Matthias R et al. (2018) The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53. J Biol Chem 293:4262-4276

Showing the most recent 10 out of 2602 publications