The OSUCCC Nucleic Acid Shared Resource (NASR) provides services to cancer investigators for DNA sequencing, genotyping, DNA methylation analysis, and quantitative real-time PCR on a variety of instrumentation platforms, as well as access to equipment for nucleic acid purification, quantitative measurement and quality control of nucleic acids, and nucleic acid imaging. NASR services include comprehensive training, consultation and assistance in experimental design and expertise to develop novel methodologies and applications relevant to cancer research. The integration of several technologies into a new multifunctional OSUCCC NASR in 2004 and consolidation of the NASR on the second floor of the Biomedical Research Tower in 2007 promoted interdisciplinary activity, and enhanced cross training of staff increasing their technical skills, motivation and flexibility. These changes resulted in optimal usage of space equipment and expertise, and increased productivity and cost-effectiveness. New equipment for highthroughput gene expression analysis and next-generation sequencing technologies has expanded NASR research capabilities for both genomic and epigenomic support. Highly experienced personnel perform continuous optimization of methods and protocols with outstanding quality control which is crucial for the improvement of data quality and turnaround times. There are strong established interactions with other shared resources including the Microarray, Proteomics and Biomedical Informatics Shared Resources. The NASR maintains a website providing basic information about the policies of the facility and convenient online scheduling and secure data transfer mechanisms. The NASR's specific goals are to: 1) provide reliable, high-quality, affordable, low- and high-throughput, genomic and epigenomic support; 2) provide, optimize, develop and apply early access technologies relevant to cancer research; 3) provide and develop infrastructure and staff for new technologies for cancer research; 4) provide immediate access to data analysis and troubleshooting; 5) provide investigators with training in data analysis, experimental strategies and assistance with investigator publications. Last year's total operational expenses of $1,540,977 were covered by 46.8% charge-backs/other grants, 11.1%i CCSG support and 42.1% institutional support. In the past year, 90.9% of NASR usage was from 96 peer-reviewed funded investigators from all 6 OSUCCC research programs. Building on this solid foundation, the mandate of the OSUCCC NASR is to be an outstanding resource, to provide the best support, and to provide the highest-quality data at the lowest price in a period of rapid and profound technological advances.

Public Health Relevance

The NASR provides OSUCCC members efficient, high-quality technical and consultative services for DNA sequencing, genotyping, DNA methylation analysis, and quantitative real-time PCR, using state-of-the-art instrumentation platforms and equipment. The NASR supports proven, standard technologies and new cutting-edge next-generation sequencing and profiling technologies, resulting In high impact scientific cancer relevant accomplishments bolstered by current progress in comparative genomics, biomedical research and the human genome project.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016058-39
Application #
8822223
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-12-01
Budget End
2015-11-30
Support Year
39
Fiscal Year
2015
Total Cost
$205,566
Indirect Cost
$70,770
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Malpeli, Giorgio; Barbi, Stefano; Greco, Corinna et al. (2018) MicroRNA signatures and Foxp3+ cell count correlate with relapse occurrence in follicular lymphoma. Oncotarget 9:19961-19979
Talbert, Erin E; Lewis, Heather L; Farren, Matthew R et al. (2018) Circulating monocyte chemoattractant protein-1 (MCP-1) is associated with cachexia in treatment-naïve pancreatic cancer patients. J Cachexia Sarcopenia Muscle 9:358-368
Wang, Jin-Ting; Xie, Wen-Quan; Liu, Fa-Quan et al. (2018) NADH protect against radiation enteritis by enhancing autophagy and inhibiting inflammation through PI3K/AKT pathway. Am J Transl Res 10:1713-1721
Karpurapu, Manjula; Lee, Yong Gyu; Qian, Ziqing et al. (2018) Inhibition of nuclear factor of activated T cells (NFAT) c3 activation attenuates acute lung injury and pulmonary edema in murine models of sepsis. Oncotarget 9:10606-10620
Norquist, Barbara M; Brady, Mark F; Harrell, Maria I et al. (2018) Mutations in Homologous Recombination Genes and Outcomes in Ovarian Carcinoma Patients in GOG 218: An NRG Oncology/Gynecologic Oncology Group Study. Clin Cancer Res 24:777-783
Zhang, Bin; Nguyen, Le Xuan Truong; Li, Ling et al. (2018) Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med 24:450-462
Tasselli, Giorgia; Filippucci, Sara; Borsella, Elisabetta et al. (2018) Yeast lipids from cardoon stalks, stranded driftwood and olive tree pruning residues as possible extra sources of oils for producing biofuels and biochemicals. Biotechnol Biofuels 11:147
Moliva, J I; Hossfeld, A P; Canan, C H et al. (2018) Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+ T-cell-dependent manner. Mucosal Immunol 11:968-978
Suarez-Kelly, Lorena P; Akagi, Keiko; Reeser, Julie W et al. (2018) Metaplastic breast cancer in a patient with neurofibromatosis type 1 and somatic loss of heterozygosity. Cold Spring Harb Mol Case Stud 4:
Dalton, William S; Sullivan, Daniel; Ecsedy, Jeffrey et al. (2018) Patient Enrichment for Precision-Based Cancer Clinical Trials: Using Prospective Cohort Surveillance as an Approach to Improve Clinical Trials. Clin Pharmacol Ther 104:23-26

Showing the most recent 10 out of 2602 publications