PROJECT-003: MOLECULAR BIOLOGY AND CANCER GENETICS PROGRAM (MBCG) PROJECT SUMMARY / ABSTRACT The Molecular Biology & Cancer Genetics (MBCG) Program at The Ohio State University Comprehensive Cancer Center (OSUCCC), led by Michael Ostrowski, PhD and Matthew Ringel, MD, unites a highly productive, collaborative and cancer focused team of 44 basic and translational scientists representing 7 colleges and 18 academic departments at The Ohio State University. Program science is centered in four major cancer-focused scientific themes: small non-coding RNAs and cancer, human cancer genetics/genomics, signal transduction and therapeutic resistance, and tumor microenvironment. Program members utilize state-of-the-art approaches to 1) identify genes and pathways that fuel tumor cell initiation and growth, and 2) provide mechanistic details of how these genes and pathways contribute to tumor progression and therapeutic resistance. Our overall goal is to define the mechanisms that account for the association between genes and cancer and to exploit this knowledge in order to reduce the incidence of death from cancer.
The Specific Aims of the MBCG Program are: 1) to identify human genes, including non-coding genes such as those encoding microRNAs, that either through direct mutations or epigenetic mechanisms, result in an increased predisposition to cancer; 2) to determine the molecular mechanisms underlying the expression and function of the genes contributing to normal development, cancer progression, and therapeutic resistance; 3) to utilize the knowledge gained from gene identification and gene functions in tumorigenesis in order to reduce the incidence of death from cancer. During the prior funding period of the OSUCCC P30 CCSG, MBCG Program members published 810 research papers, including 104 high impact (> 10) manuscripts in journals such as Cell, Cancer Cell, Science, Nature Medicine, Nature Cell Biology, Journal of Clinical Oncology, and Journal of Clinical Investigation. There is extensive collaboration, with 21% intra-programmatic, 31% inter-programmatic, and 66% multi- institutional publications. Overall, 81% of MBCG publications are collaborative. MBCG Program members are principal investigators (PIs) on seven NCI programmatic grants, including a P01 and U01 in breast cancer (P01 CA097189, U01 CA154200), a P01 and P50 SPORE in thyroid cancer (P01 CA124570, P50 CA168505), a P01 in epigenetics (CA129242) and two U01s in lung cancer (U01 CA152758, U01 CA166905). They are PIs on CCSG-approved grants whose direct funding is currently $9.39 million, with $7.5 million in NCI funding (80% of total CCSG-approved funding). Program members are principal investigators on 21 active protocols that have accrued 5760 patients over the past five years. MBCG studies are predominantly interventional but non-therapeutic, and non-interventional as most of our interventional therapeutic work is accomplished collaboratively within the Translational Therapeutics and Leukemia Research Programs.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016058-40
Application #
9000521
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
1997-09-12
Project End
2020-11-30
Budget Start
2016-02-09
Budget End
2016-11-30
Support Year
40
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Kodigepalli, Karthik M; Bonifati, Serena; Tirumuru, Nagaraja et al. (2018) SAMHD1 modulates in vitro proliferation of acute myeloid leukemia-derived THP-1 cells through the PI3K-Akt-p27 axis. Cell Cycle 17:1124-1137
Zhang, Tianyu; Xu, Jielin; Deng, Siyuan et al. (2018) Core signaling pathways in ovarian cancer stem cell revealed by integrative analysis of multi-marker genomics data. PLoS One 13:e0196351
Yang, Zhifen; Zhang, Jing; Jiang, Dadi et al. (2018) A Human Genome-Wide RNAi Screen Reveals Diverse Modulators that Mediate IRE1?-XBP1 Activation. Mol Cancer Res 16:745-753
LaPak, Kyle M; Vroom, Dennis C; Garg, Ayush A et al. (2018) Melanoma-associated mutants within the serine-rich domain of PAK5 direct kinase activity to mitogenic pathways. Oncotarget 9:25386-25401
Byrd, John C; Smith, Stephen; Wagner-Johnston, Nina et al. (2018) First-in-human phase 1 study of the BTK inhibitor GDC-0853 in relapsed or refractory B-cell NHL and CLL. Oncotarget 9:13023-13035
Kaffenberger, Benjamin H; Hinton, Alice; Krishna, Somashekar G (2018) The impact of underlying disease state on outcomes in patients with pyoderma gangrenosum: A national survey. J Am Acad Dermatol 79:659-663.e2
Horowitz, Neil S; Larry Maxwell, G; Miller, Austin et al. (2018) Predictive modeling for determination of microscopic residual disease at primary cytoreduction: An NRG Oncology/Gynecologic Oncology Group 182 Study. Gynecol Oncol 148:49-55
Rahnemai-Azar, Amir A; Cloyd, Jordan M; Weber, Sharon M et al. (2018) Update on Liver Failure Following Hepatic Resection: Strategies for Prediction and Avoidance of Post-operative Liver Insufficiency. J Clin Transl Hepatol 6:97-104
Rebbeck, Timothy R (see original citation for additional authors) (2018) Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Hum Mutat 39:593-620
Nyankima, A Gloria; Rojas, Juan D; Cianciolo, Rachel et al. (2018) In Vivo Assessment of the Potential for Renal Bio-Effects from the Vaporization of Perfluorocarbon Phase-Change Contrast Agents. Ultrasound Med Biol 44:368-376

Showing the most recent 10 out of 2602 publications