CORE-013: PROTEOMICS SHARED RESOURCE (PSR) PROJECT SUMMARY / ABSTRACT The OSUCCC Proteomics Shared Resource (PSR) provides CCSG investigators access to advanced mass spectrometry (MS) instrumentation, ancillary instrumentation for sample preparation, and expert staff to enable proteomic research, including data analysis. Two tenured faculty experts in mass spectrometry and proteomics, Drs. Michael Freitas (MBCG) and Vicki Wysocki, serve as PSR Director and Senior Faculty Advisor, respectively. They provide scientific leadership to the PSR with expertise in cancer proteomics, protein chemistry, bioinformatics, and mass spectroscopy methods development. The PSR offers numerous proteomics services to users that fall under the categories of protein identification, characterization, and quantification. The ability to confidently identify proteins is the central role of the PSR. Examples of protein characterization analysis include: identification of post-translational modifications, alternate splice forms, de novo protein sequencing and protein-protein interaction analysis.
The Specific Aims of the PSR are to: 1) provide advanced mass spectrometry based proteomics services; 2) provide innovative proteomic data analytics and bioinformatics platforms; and, 3) provide consultations with investigators on experiment design and train users on the operation of several self-operated MS instruments within the shared resource. Over the last grant period, there have been substantial upgrades to equipment in the PSR. Early in the grant period, three mass spectrometers were acquired with the help of federally funded awards: a Bruker Maxis Q-TOF, a Bruker UltrafleXtreme MALDI TOF-TOF, and a Bruker AmaZon ion trap with electron transfer dissociation (ETD). This year, three additional mass spectrometers, two high-end instruments (a Thermo Orbitrap Fusion and a Bruker 15 T FTICR along with a Thermo Quantiva triple quadrupole for targeted (MRM) analyses) are to be installed in the PSR with funding from two NIH S10 awards and also OSUCCC and other institutional support. These state-of-the-art MS instruments will improve services offered to OSUCCC members by providing significantly higher throughput shotgun proteomics, improved post-translational modification analysis, improved isotopic fine structure analysis for metabolomics, and greater capacity and data quality. The PSR has supported 37 OSUCCC members from all five OSUCCC research programs including 1 K24, 1 N01, 8 P01s, 2 P50s, 19 R01s, 8 R21s, 2 RC2s, 1 T32, and 2 U01s. The PSR has also contributed to over 74 OSUCCC member publications during the last grant period, 11 of which were in publications with a journal impact factor >10. The future plans for the PSR involve a constant effort to develop and adopt new innovative techniques and methods for protein analysis, and to acquire state-of-the-art mass spectrometry and chromatography instrumentation. Specifically, the PSR will fully integrate the 3 recently purchased major instruments, to introduce methods for 2-dimensional and 3-dimensional chromatography, and provide proteogenomics data integration. The PSR leverages extensive institutional support, and seeks only 14.2% support from CCSG funds. The Proteomics Shared Resource is part of the Analytics Grouping.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016058-44
Application #
9843872
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2019-12-01
Budget End
2020-11-30
Support Year
44
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Rolfo, Christian; Mack, Philip C; Scagliotti, Giorgio V et al. (2018) Liquid Biopsy for Advanced Non-Small Cell LungĀ Cancer (NSCLC): A Statement Paper from theĀ IASLC. J Thorac Oncol 13:1248-1268
Ren, Yulin; Gallucci, Judith C; Li, Xinxin et al. (2018) Crystal Structures and Human Leukemia Cell Apoptosis Inducible Activities of Parthenolide Analogues Isolated from Piptocoma rufescens. J Nat Prod 81:554-561
McDonald, J Tyson; Kritharis, Athena; Beheshti, Afshin et al. (2018) Comparative oncology DNA sequencing of canine T cell lymphoma via human hotspot panel. Oncotarget 9:22693-22702
Nguyen, Phuong; Wuthrick, Evan; Chablani, Priyanka et al. (2018) Does Delaying Surgical Resection After Neoadjuvant Chemoradiation Impact Clinical Outcomes in Locally Advanced Rectal Adenocarcinoma?: A Single-Institution Experience. Am J Clin Oncol 41:140-146
Elchuri, Sailaja V; Rajasekaran, Swetha; Miles, Wayne O (2018) RNA-Sequencing of Primary Retinoblastoma Tumors Provides New Insights and Challenges Into Tumor Development. Front Genet 9:170
Reiff, Sean D; Muhowski, Elizabeth M; Guinn, Daphne et al. (2018) Noncovalent inhibition of C481S Bruton tyrosine kinase by GDC-0853: a new treatment strategy for ibrutinib-resistant CLL. Blood 132:1039-1049
Nabar, Gauri M; Mahajan, Kalpesh D; Calhoun, Mark A et al. (2018) Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery. Int J Nanomedicine 13:351-366
Tang, Xiaowen; Yang, Lin; Li, Zheng et al. (2018) First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res 8:1083-1089
Lai, Xiulan; Stiff, Andrew; Duggan, Megan et al. (2018) Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors. Proc Natl Acad Sci U S A 115:5534-5539
Reeves, Katherine W; Pennell, Michael; Foraker, Randi E et al. (2018) Predictors of vasomotor symptoms among breast cancer survivors. J Cancer Surviv 12:379-387

Showing the most recent 10 out of 2602 publications