? NUTRIENT AND PHYTOCHEMICAL ANALYTICS SHARED RESOURCE (NPASR) The mission of the NPASR is to provide niche services supporting research with high quality assays for biomarkers of tobacco exposure, specific nutrients, or a vast array of anti-cancer phytochemicals found in food sources. NPASR primarily supports the Molecular Carcinogenesis and Chemoprevention (MCC) and the Cancer Control (CC) Programs, which have robust research examining the role of diet and tobacco in cancer etiology, prevention, and survivorship. The NPASR co-Directors are Drs. Steven Clinton, a translational researcher in cancer prevention (interim co-Director, Senior Faculty Advisor; MCC co-Leader) and Devin Peterson, a senior food science chemist in the College of Food, Agricultural, and Environmental Sciences.
The Specific Aims of the NPASR are to: 1) provide expert, leading-edge bioanalytical method development and quantitative analysis of nutrients and bioactive phytochemicals in foodstuffs; 2) conduct targeted quantitative analysis of nutrients, bioactive phytochemicals and their metabolites in biological samples generated from in vitro, in vivo and human studies using HPLC-MS/MS techniques; and 3) perform untargeted metabolomics and lipidomics services for cancer-related studies. NPASR technologies include state-of-the-art ultra-high performance liquid chromatography (UHPLC), mass spectrometry (MS) and liquid chromatography triple quadrupole MS/MS (LC- MS/MS). NPASR has added several new analytical capabilities during the current funding cycle including: 1) ion mobility hardware facilitating a broad semi-quantitative lipidomics platform; 2) a second MS instrument to support untargeted metabolomics and lipidomics demand; and 3) a state-of-the-art MS/MS for utmost sensitivity. During the current funding cycle, the NPASR supported 49 publications (2 > 10 impact factor), 55 users, and 6 NCI grants, including 1 P50, 3 R01s, 1 U19 and 1 U01, involving all five CCC programs. These efforts and publications have contributed to defining biomarkers of exposure or intake, and provided novel insight into phytochemical absorption, distribution, metabolism, and excretion. More recently, NPASR has expanded into targeted and untargeted metabolomics supporting our understanding of individual cancer risk due to tobacco exposure, nutrients, specific foods, and dietary patterns. To meet future demands of OSUCC Investigators aligned with OSUCCC strategic priorities, NPASR will further support, for example, studies of metabolomic- microbiome interactions, genetic determinants of metabolism and tobacco use biomarkers. During the next grant cycle, lipidomics and bioactive lipid analytic capabilities will be expanded to meet the needs of a growing user base of all five programs. The NPASR provides a critical service for CCC members evaluating foods, nutrients and carcinogens that spans research disciplines from cell culture and experimental animal studies to human trials and molecular epidemiology. The annual budget of the NPASR is $387,249, yet the CCSG request is $74,239. As such, the NPASR leverages extensive institutional support and seeks only 19.2% support from CCSG funds.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016058-45
Application #
10090015
Study Section
Subcommittee H - Clinical Groups (NCI)
Project Start
1997-09-12
Project End
2025-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
45
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Talbert, Erin E; Lewis, Heather L; Farren, Matthew R et al. (2018) Circulating monocyte chemoattractant protein-1 (MCP-1) is associated with cachexia in treatment-naïve pancreatic cancer patients. J Cachexia Sarcopenia Muscle 9:358-368
Wang, Jin-Ting; Xie, Wen-Quan; Liu, Fa-Quan et al. (2018) NADH protect against radiation enteritis by enhancing autophagy and inhibiting inflammation through PI3K/AKT pathway. Am J Transl Res 10:1713-1721
Karpurapu, Manjula; Lee, Yong Gyu; Qian, Ziqing et al. (2018) Inhibition of nuclear factor of activated T cells (NFAT) c3 activation attenuates acute lung injury and pulmonary edema in murine models of sepsis. Oncotarget 9:10606-10620
Norquist, Barbara M; Brady, Mark F; Harrell, Maria I et al. (2018) Mutations in Homologous Recombination Genes and Outcomes in Ovarian Carcinoma Patients in GOG 218: An NRG Oncology/Gynecologic Oncology Group Study. Clin Cancer Res 24:777-783
Zhang, Bin; Nguyen, Le Xuan Truong; Li, Ling et al. (2018) Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med 24:450-462
Tasselli, Giorgia; Filippucci, Sara; Borsella, Elisabetta et al. (2018) Yeast lipids from cardoon stalks, stranded driftwood and olive tree pruning residues as possible extra sources of oils for producing biofuels and biochemicals. Biotechnol Biofuels 11:147
Moliva, J I; Hossfeld, A P; Canan, C H et al. (2018) Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8+ T-cell-dependent manner. Mucosal Immunol 11:968-978
Suarez-Kelly, Lorena P; Akagi, Keiko; Reeser, Julie W et al. (2018) Metaplastic breast cancer in a patient with neurofibromatosis type 1 and somatic loss of heterozygosity. Cold Spring Harb Mol Case Stud 4:
Malpeli, Giorgio; Barbi, Stefano; Greco, Corinna et al. (2018) MicroRNA signatures and Foxp3+ cell count correlate with relapse occurrence in follicular lymphoma. Oncotarget 9:19961-19979
McRee, Annie-Laurie; Shoben, Abigail; Bauermeister, Jose A et al. (2018) Outsmart HPV: Acceptability and short-term effects of a web-based HPV vaccination intervention for young adult gay and bisexual men. Vaccine 36:8158-8164

Showing the most recent 10 out of 2602 publications