? PROTEOMICS SHARED RESOURCE (PSR) The PSR provides expertise and access to state-of-the-art instrumentation for proteomics experiments. The PSR is embedded within the OSU Campus Chemical Instrument Center, offering competitive pricing and exceptional service by leveraging generous support from the Office of Research and Colleges, and grants from the NIH. During the last review, the PSR was rated Outstanding as part of the Analytics Shared Resource Group, with three addressable comments to reduce turn-around time, a perceived drop in percent users actually due to an increase of non-cancer users as an OSU facility, and perceived duplicative services. Major services include: 1) consultation for sample preparation, MS experiment design, data analysis, and timelines; 2) protein identification using state-of-the-art MS on a variety of sample matrices; 3) in depth protein characterization including, but not limited to, post-translational modifications, protein variant/mutations, protein truncation sites detection, alternate splice form detection, de novo protein sequencing, protein cross-linking, and protein-protein interactions; 4) protein quantification using label-free (spectral counts and/or relative intensity) or stable isotope label techniques (SILAC or ITRAQ/TMT), quantitative MALDI tissue imaging, and targeted mass spectrometry; and 5) data analysis provided with the BISR using commercial and in-house developed software platforms. Major equipment has been enhanced in the past 5 years through three NIH S10 grants and a funded P41 Resource Center for methods development.
PSR Specific Aims are to: 1) provide advanced mass spectrometry-based proteomics services; 2) provide innovative proteomic data analytics and bioinformatics platforms to facilitate user interpretation; and, 3) provide consultation on experimental design and training on self-operated MS instruments. Over the current funding cycle, the PSR provided key services in support of 44 publications (5 > 10 impact factor), 380 users, and 8 NCI grants, including 1 K22, 1 P01, 4 R01s, 1 R33 and 1 U01. The PSR is critical to the OSUCCC research priorities of immuno-oncology, translational genomics, cancer engineering and cancer prevention and survivorship. Advanced analytical platforms allow researchers to discover novel differentially expressed proteins in serum, urine, BAL fluid, saliva, frozen tissues, formalin fixed tissues, cell culture media, and cell lysates. Given the robust OSUCCC recruitment, demand for services and new technologies will increase. The GSR will expand its staff, instrumentation and services before capacity is reached. To address this, planned new services are being implemented or expanded (informatics services with BISR, capillary electrophoresis and ion mobility methods, tissue imaging, and structural biology using native MS, as developed by a P41 Resource grant). Over the next funding period, the PSR will be a member of the Immune Monitoring and Discovery Platform. The annual budget of the PSR is $1,993,101, yet the CCSG request is $158,381. Thus, the PSR leverages extensive institutional support and seeks only 7.9% support from CCSG funds.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA016058-45
Application #
10090017
Study Section
Subcommittee H - Clinical Groups (NCI)
Project Start
1997-09-12
Project End
2025-11-30
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
45
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Owen, Dwight; Chaft, Jamie E (2018) Immunotherapy in surgically resectable non-small cell lung cancer. J Thorac Dis 10:S404-S411
O'Brien, Susan M; Jaglowski, Samantha; Byrd, John C et al. (2018) Prognostic Factors for Complete Response to Ibrutinib in Patients With Chronic Lymphocytic Leukemia: A Pooled Analysis of 2 Clinical Trials. JAMA Oncol 4:712-716
Guo, Sijin; Piao, Xijun; Li, Hui et al. (2018) Methods for construction and characterization of simple or special multifunctional RNA nanoparticles based on the 3WJ of phi29 DNA packaging motor. Methods 143:121-133
Sadowski, Abbey R; Gardner, Heather L; Borgatti, Antonella et al. (2018) Phase II study of the oral selective inhibitor of nuclear export (SINE) KPT-335 (verdinexor) in dogs with lymphoma. BMC Vet Res 14:250
Barredo, Julio C; Hastings, Caroline; Lu, Xiamin et al. (2018) Isolated late testicular relapse of B-cell acute lymphoblastic leukemia treated with intensive systemic chemotherapy and response-based testicular radiation: A Children's Oncology Group study. Pediatr Blood Cancer 65:e26928
Kim, So-Youn; Nair, Devi M; Romero, Megan et al. (2018) Transient inhibition of p53 homologs protects ovarian function from two distinct apoptotic pathways triggered by anticancer therapies. Cell Death Differ :
Yadav, Marshleen; Song, Feifei; Huang, Jason et al. (2018) Ocimum flavone Orientin as a countermeasure for thrombocytopenia. Sci Rep 8:5075
Siegel, Marni B; He, Xiaping; Hoadley, Katherine A et al. (2018) Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J Clin Invest 128:1371-1383
White, Brian S; Lanc, Irena; O'Neal, Julie et al. (2018) A multiple myeloma-specific capture sequencing platform discovers novel translocations and frequent, risk-associated point mutations in IGLL5. Blood Cancer J 8:35
Volinia, Stefano; Bertagnolo, Valeria; Grassilli, Silvia et al. (2018) Levels of miR-126 and miR-218 are elevated in ductal carcinoma in situ (DCIS) and inhibit malignant potential of DCIS derived cells. Oncotarget 9:23543-23553

Showing the most recent 10 out of 2602 publications