The primary purpose of the Transgenic/Knockout Mouse Shared Resource (TG-KO) is to provide an efficient and economical means for producing genetically modified mice for members of the Virginia Commonwealth University (VCU) Massey Cancer Center (MCC). Genetically modified mice (including transgenic mice, in which customized genes are introduced into the genome, and """"""""knockout/knock-in"""""""" mice, in which endogenous genes within the mouse genome are specifically inactivated or modified) have become an indispensable tool in cancer research. The utility of such models ranges from studies of the basic biology of tumorigenesis and progression to the creation of genetically accurate tumor models for the evaluation of novel therapeutic approaches. The TG-KO offers the following services: (1) transgenic mouse production, (2) knockout/knock-in mouse production, (3) mouse line rederivation by embryo transfer, (4) embryo and sperm cryopreservation, (5) tail DNA preparation and genotyping, and (6) management ofthe IVIS Spectrum optical imaging facility in the Molecular Medicine Research Building (MMRB) barrier vivarium. In addition, the TGKO provides extensive consultation on many aspects of transgenic/knockout mouse technology, including overall experimental design, vector design, budgeting for mouse colony maintenance, and preparation of applications to the lACUC for the use of laboratory animals in research. In addition, the TG-KO staff provides instruction on overall colony management, including breeding strategies, weaning, ear punching, and tail DNA isolation. During the period from Jan. 1, 2010 to December 31, 2010, the TG-KO provided services to 36 different investigators, 19 of whom were MCC members. This included 2 transgenic mouse projects for 2 investigators, 7 knockout mouse projects for 6 investigators, 3 cryopreservation projects for 3 investigators, 54 mouse line rederivations for 18 investigators, and 479 genotyping reactions for 4 investigators.

Public Health Relevance

The ability to create mouse models in which a particular gene is introduced into a mouse and turned on or in which a particular gene is turned off'is instrumental to understanding cancer biology. The Transgenic/ Knockout IVIouse Shared Resource provides the necessary expertise to assist MCC investigators in creating such mice.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016059-33
Application #
8662710
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
33
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Virginia Commonwealth University
Department
Type
DUNS #
City
Richmond
State
VA
Country
United States
Zip Code
23298
Kazarian, Elizabeth; Son, HyunYoung; Sapao, Paulene et al. (2018) SPAG17 Is Required for Male Germ Cell Differentiation and Fertility. Int J Mol Sci 19:
Farrell, Nicholas P; Gorle, Anil K; Peterson, Erica J et al. (2018) Metalloglycomics. Met Ions Life Sci 18:
Ordoñez, José A; Bandyopadhyay, Dipankar; Lachos, Victor H et al. (2018) Geostatistical estimation and prediction for censored responses. Spat Stat 23:109-123
Abeyawardhane, Dinendra L; Fernández, Ricardo D; Murgas, Cody J et al. (2018) Iron Redox Chemistry Promotes Antiparallel Oligomerization of ?-Synuclein. J Am Chem Soc 140:5028-5032
Zhang, Yong; Liu, Hong; Li, Wei et al. (2018) Intraflagellar transporter protein 140 (IFT140), a component of IFT-A complex, is essential for male fertility and spermiogenesis in mice. Cytoskeleton (Hoboken) 75:70-84
Singh, Dhirendra P; Kaur, Gagandeep; Bagam, Prathyusha et al. (2018) Membrane microdomains regulate NLRP10- and NLRP12-dependent signalling in A549 cells challenged with cigarette smoke extract. Arch Toxicol 92:1767-1783
Lochmann, Timothy L; Floros, Konstantinos V; Naseri, Mitra et al. (2018) Venetoclax Is Effective in Small-Cell Lung Cancers with High BCL-2 Expression. Clin Cancer Res 24:360-369
Zhou, Liang; Zhang, Yu; Sampath, Deepak et al. (2018) Flavopiridol enhances ABT-199 sensitivity in unfavourable-risk multiple myeloma cells in vitro and in vivo. Br J Cancer 118:388-397
Huang, Dian; Leslie, Kevin A; Guest, Daniel et al. (2018) High-Speed Live-Cell Interferometry: A New Method for Quantifying Tumor Drug Resistance and Heterogeneity. Anal Chem 90:3299-3306
Salman, Ali; Koparde, Vishal; Hall, Charles E et al. (2018) Determining the Quantitative Principles of T Cell Response to Antigenic Disparity in Stem Cell Transplantation. Front Immunol 9:2284

Showing the most recent 10 out of 586 publications