The goal of the Vector Core is to ensure that Center members have access to the latest and the best in vector technology they need to research the roles of specific genes in cancer. Services include consultation, production of new adenovirus, amplification and purification of existing adenovirus, production and purification of rAAV, and production of retrovirus vectors. The Core is led by Dr. R. Jude Samulski, Faculty Director and Dr. Xiaohuai Zhou, Facility Director. The Core adds value to the Center by providing members access to our standard services as well as the latest vector technologies made available through our own efforts. Some of our recent contributions in the gene delivery field are: production of Clinical grade vectors, invection of AAV alternate serotype vectors, and invention of self complementary AAV vectors for high-efficiency transduction. Highlights of research supported by the Core include: 1) Dr. Baldwin and Dr. Cance used adenovirus encoding carboxyl-terminal domain of FAK to induce the apoptosis of breast cancer cells. Dr. Baldwin also used adenovirus encoding IkappaB super-repressor to render tumor cells more susceptible to chemotherapy and radiation treatment. 2) Dr. Brenner and Dr. Lemasters used tAd dominant negative TRAF2, NIKdn, IKKldn, IKK2dn, and IkappaBsr in the elucidation of an apoptotic pathway in hepatoma cells. Future plans for the Core include the implementation of producer cell technology for rAAV production.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016086-31
Application #
7310756
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2005-12-01
Budget End
2006-11-30
Support Year
31
Fiscal Year
2006
Total Cost
$45,781
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Ma, Shaohua; Paiboonrungruan, Chorlada; Yan, Tiansheng et al. (2018) Targeted therapy of esophageal squamous cell carcinoma: the NRF2 signaling pathway as target. Ann N Y Acad Sci 1434:164-172
Aung, Kyaw L; Fischer, Sandra E; Denroche, Robert E et al. (2018) Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer: Early Results from the COMPASS Trial. Clin Cancer Res 24:1344-1354
Suh, Junghyun L; Watts, Brian; Stuckey, Jacob I et al. (2018) Quantitative Characterization of Bivalent Probes for a Dual Bromodomain Protein, Transcription Initiation Factor TFIID Subunit 1. Biochemistry 57:2140-2149
Brock, William J; Beaudoin, James J; Slizgi, Jason R et al. (2018) Bile Acids as Potential Biomarkers to Assess Liver Impairment in Polycystic Kidney Disease. Int J Toxicol 37:144-154
Thomas, Nancy E; Edmiston, Sharon N; Tsai, Yihsuan S et al. (2018) Utility of TERT Promoter Mutations for Cutaneous Primary Melanoma Diagnosis. Am J Dermatopathol :
Bensen, Jeannette T; Graff, Mariaelisa; Young, Kristin L et al. (2018) A survey of microRNA single nucleotide polymorphisms identifies novel breast cancer susceptibility loci in a case-control, population-based study of African-American women. Breast Cancer Res 20:45
Hall, Marissa G; Marteau, Theresa M; Sunstein, Cass R et al. (2018) Public support for pictorial warnings on cigarette packs: an experimental study of US smokers. J Behav Med 41:398-405
Thorsson, V├ęsteinn; Gibbs, David L; Brown, Scott D et al. (2018) The Immune Landscape of Cancer. Immunity 48:812-830.e14
Wu, Bing; Zhang, Song; Guo, Zengli et al. (2018) RAS P21 Protein Activator 3 (RASA3) Specifically Promotes Pathogenic T Helper 17 Cell Generation by Repressing T-Helper-2-Cell-Biased Programs. Immunity 49:886-898.e5
Ding, Li; Bailey, Matthew H; Porta-Pardo, Eduard et al. (2018) Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell 173:305-320.e10

Showing the most recent 10 out of 1525 publications