Proteomics Core Facility The Proteomics Core strives to provide outstanding mass spectrometry-based service and training to Cancer Center researchers. The core provides state-of-the-art analysis for protein identification from mixtures of proteins; defining post-translational modifications (i.e. phosphorylation, acetylation, ubiquitination); and quantitative analysis of changes in protein expression or modification using methods such as SILAC and ITRAQ, The core works with investigators to ensure use of the best proteomic applications for design of experimental protocols needed to answer important cancer biology-related questions and provides a unique training environment for students and fellows. Highlights of proteomic research supported by the core include papers In Cell (Salmon), Nature (Zhang), PNAS (Whang) and Molecular and Cellular Biology (Burridge, Marzluff, Patterson). The core is led by three Ph.D. scientists with extensive proteomics experience: Drs. Lee Graves (Faculty Director), Maria Hines (Facility Director) and Xian Chen (Technology Development Director). Core usage has steadily increased and reflects the fundamental need to understand proteome dynamics at an ever increasing level of sophistication. The Institution and Cancer Center has provided more than $2.5 million dollars in the past five years for new mass spectrometry and nano-LC instrumentation. The core continues to increase its capacity to perform high-throughput large scale, quantitative proteomics. To accomplish these objectives, CCSG support of $144,563 is proposed, which is approximately 30% of the projected Proteomics Core operating costs for 2010. In 2009, the core was used by 46 cancer center members (100% peer-reviewed), accounting for 86% of total core usage. The proposed budget will partially support salaries of six core personnel and sen/ice contracts for mass spectrometers. This is an approximate 19% increase in CCSG support that is needed for the expansion of large scale high-throughput, quantitative proteomics. Future plans involve expanding the mass spectrometry-based infrastructure with an additional LTQ Orbitrap for support of state-of-the-art quantitative proteomics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016086-39
Application #
8786521
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-12-01
Budget End
2015-11-30
Support Year
39
Fiscal Year
2015
Total Cost
$225,496
Indirect Cost
$73,405
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Moschos, Stergios J; Sullivan, Ryan J; Hwu, Wen-Jen et al. (2018) Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. JCI Insight 3:
Brosnan, Evelyn M; Anders, Carey K (2018) Understanding patterns of brain metastasis in breast cancer and designing rational therapeutic strategies. Ann Transl Med 6:163
Valle, Carmina G; Queen, Tara L; Martin, Barbara A et al. (2018) Optimizing Tailored Communications for Health Risk Assessment: A Randomized Factorial Experiment of the Effects of Expectancy Priming, Autonomy Support, and Exemplification. J Med Internet Res 20:e63
Sun, Junjiang; Shao, Wenwei; Chen, Xiaojing et al. (2018) An Observational Study from Long-Term AAV Re-administration in Two Hemophilia Dogs. Mol Ther Methods Clin Dev 10:257-267
Wilczewski, Caralynn M; Hepperla, Austin J; Shimbo, Takashi et al. (2018) CHD4 and the NuRD complex directly control cardiac sarcomere formation. Proc Natl Acad Sci U S A 115:6727-6732
Waters, Andrew M; Der, Channing J (2018) KRAS: The Critical Driver and Therapeutic Target for Pancreatic Cancer. Cold Spring Harb Perspect Med 8:
Cai, Ling; Tsai, Yi-Hsuan; Wang, Ping et al. (2018) ZFX Mediates Non-canonical Oncogenic Functions of the Androgen Receptor Splice Variant 7 in Castrate-Resistant Prostate Cancer. Mol Cell 72:341-354.e6
Au, Kin Man; Tripathy, Ashutosh; Lin, Carolina Pe-I et al. (2018) Bespoke Pretargeted Nanoradioimmunotherapy for the Treatment of Non-Hodgkin Lymphoma. ACS Nano 12:1544-1563
Mirlekar, Bhalchandra; Michaud, Daniel; Searcy, Ryan et al. (2018) IL35 Hinders Endogenous Antitumor T-cell Immunity and Responsiveness to Immunotherapy in Pancreatic Cancer. Cancer Immunol Res 6:1014-1024
Buist, Diana S M; Abraham, Linn; Lee, Christoph I et al. (2018) Breast Biopsy Intensity and Findings Following Breast Cancer Screening in Women With and Without a Personal History of Breast Cancer. JAMA Intern Med 178:458-468

Showing the most recent 10 out of 1525 publications